
PathFinder: A Negotiation-Based
Performance-Driven Router for FPGAs

Larry McMurchie and Carl Ebeling
Dept. of Computer Science and Engineering

University of Washington, Seattle, WA

Abstract

Routing FPGAs is a challenging problem because
of the relative scarcity of routing resources, both
wires and connection points. This can lead either to
slow implementations caused by long wiring paths
that avoid congestion or a failure to route all
signals. This paper presents PathFinder, a router that
balances the goals of performance and routability.
PathFinder uses an iterative algorithm that con-
verges to a solution in which all signals are routed
while achieving close to the optimal performance
allowed by the placement. Routability is achieved
by forcing signals to negotiate for a resource and
thereby determine which signal needs the resource
most. Delay is minimized by allowing the more
critical signals a greater say in this negotiation.
Because PathFinder requires only a directed graph to
describe the architecture of routing resources, it
adapts readily to a wide variety of FPGA
architectures such as Triptych, Xilinx 3000 and
mesh-connected arrays of FPGAs. The results of
routing ISCAS benchmarks on the Triptych FPGA
architecture show an average increase of only 4.5%
in critical path delay over the optimum delay for a
placement. Routes of ISCAS benchmarks on the
Xilinx 3000 architecture show a greater completion
rate than commercial tools, as well as 11% faster
implementations.

1 Introduction

The problem of routing FPGAs can be stated simply as that
of assigning signals to routing resources in order to
successfully route all signals while achieving a given
overall performance. The first goal, complete routing of all
signals, is difficult to achieve in FPGAs because of the lack
of routing resources. The usual approach to achieving this
goal is to minimize the use of routing resources by
constructing minimum routing trees for each signal.

Although this reduces the demand for routing resources,
signals will still compete for the same resources and the
challenge is to find a way to allocate resources so that all
signals can be routed. The second goal, minimizing delay,
requires the use of minimum delay routes for signals, which
in general are much more expensive in terms of routing
resources than minimum routing trees. Thus the solution to
the entire routing problem requires the simultaneous
solution to two interacting and competing subproblems.

The problem of routing FPGAs bears a considerable
resemblance to the problem of global routing for custom
integrated circuit design and one would hope to be able to
apply the same algorithms to FPGAs. However, the two
problems differ in several fundamental respects. First,
routing resources in FPGAs are discrete and scarce, while
they are reasonably continuous in custom integrated
circuits. For this reason FPGAs require an integrated
approach using both global and detailed routing. A second
difference is that the global routing problem for custom ICs
is rooted in an undirected graph embedded in Cartesian
space. In FPGAs the switches are often directional, and the
routing resources connect arbitrary (but fixed) locations,
requiring a directed graph which may not be embedded in
Cartesian space. Both of these distinctions are important, as
they prevent direct application of much of the work that has
been done in custom IC routing to FPGAs.

By far the most common approach to global routing of
custom ICs is a shortest path algorithm with obstacle
avoidance. By itself, this technique usually yields many
unroutable nets, which must be rerouted by hand. A
plethora of rip-up and retry approaches have been proposed
to remedy the deficiencies of this approach ([Dees81],
[Linsker84], [Cohn91]). The basic problem with rip-up and
retry is that the success of a route is dependent not just on
the choice of which nets to reroute, but also on the order in
which rerouting is done.

Several papers have described versions of shortest path with
rip-up and retry targeted to FPGAs. [Hill91] uses a breadth-
first search while performing routes in random order and a
"blame factor" is introduced to decide what routes need to be
ripped up when a connection is unrealized. [Brown92] uses
a global router to assign connections so that channel
densities are balanced; a detailed router generates families of
explicit paths within channels to resolve congestion. If
some connections are unrealizable, the channel routes are
ripped up and a rerouting is performed using larger families
of paths.

Delay is usually factored into the standard rip-up and retry
approach by ordering the nets to be routed such that critical
nets are routed most directly ([Brown92]). How to
optimally balance the competing goals of minimizing delay
of critical paths and eliminating congestion is an open
question. [Alexander94] presents a general multi-weighted
graph formalism that attempts to accommodate delay and
congestion. Results based only upon congestion
elimination compare favorably with those of [Brown92];
however, the work is preliminary and no results are given
that compare critical path lengths.

The most extensive work to date factoring delay into FPGA
routing has been that of [Frankle92]. In this work a slack
analysis is performed to calculate upper bounds for
individual source/sink connections. A rip-up and retry
scheme routes signals, increasing upper bounds as needed.
Once the routing has completed, selected connections are
rerouted so as to reduce the overall delay. Although the
results of this scheme are good (delays of the final routes
average 16% higher than optimal), the performance of this
scheme, as in the other rip-up and retry approaches, suffers
from a dependency upon the order in which connections are
routed. Also, by performing a slack analysis only at the
beginning and the end of the routing process, opportunities
for balancing congestion and delay are lost.

In this paper we present PathFinder, an iterative algorithm
that balances the competing goals of eliminating
congestion and minimizing delay of critical paths in an
iterative framework. In this framework, signals are allowed
to share routing resources initially, but subsequently must
negotiate with other signals to determine which signal
needs the shared resource most. A timing analysis is
performed every iteration to apply pressure continuously to
routes that can potentially become critical if left unchecked.
The emphasis of our approach is to adjust the costs of
routing resources in a gradual, semi-equilibrium fashion to
achieve an optimum distribution of resources.

We have been careful not to introduce architecture-specific
features into PathFinder so that it can be applied to any
FPGA architecture. The router is customized to a specific
architecture by specifying a template that describes routing
resources and pin permutability. Although PathFinder
could be improved by adding architecture-specific
knowledge, our experiments show that it performs
extremely well even without this extra knowledge.

2 General Approach

PathFinder is derived from an iterative scheme for the
global routing of custom IC's developed by Nair [Nair87].
This scheme differs in several aspects from most forms of
rip-up and retry. Only one net is ripped up at a time, but
every net is ripped up and rerouted on every iteration, even
if the net does not pass through a congested area. In this
way nets passing through uncongested areas can be diverted
to make room for other nets currently in congested regions.
Nets are ripped up and rerouted in the same order every

iteration. Our routing algorithm differs from Nair’s
primarily in the construction of the cost function and the
handling of delay.

PathFinder is composed of two parts: a signal router, which
routes one signal at a time using a shortest-path algorithm,
and a global router, which calls the signal router to route all
signals, adjusting the resource costs in order to achieve a
complete routing. The signal router uses a breadth-first
search to find the shortest path given a congestion cost and
delay for each routing resource. The global router
dynamically adjusts the congestion penalty of each routing
resource based on the demands signals place on that
resource. During the first iteration of the global router there
is no cost for sharing routing resources and individual
routing resources may be used by more than one signal.
However, during subsequent iterations the penalty is
gradually increased so that signals in effect negotiate for
resources. Signals may use shared resources that are in
high demand if all alternative routes utilize resources in
even higher demand; other signals will tend to spread out
and use resources in lower demand. The global router
reroutes signals using the signal router until no more
resources are shared. The use of a cost function that
gradually increases the penalty for sharing is a significant
departure from Nair’s algorithm, which assigns a cost of
infinity to resources whose capacity is exceeded.

In addition to minimizing congestion, the signal router
ensures that the delays of all signal paths stay within the
critical path delay. For multiple sinks, low congestion cost
can be achieved by a minimum Steiner tree, but this can
result in long delays. Low delay can be achieved by a
minimum-delay tree, but this may mean competition by
many signals for the same routing resources. To achieve a
balance, the signal router uses the relative contribution of
each connection in the circuit (i.e. source-sink pair) to the
overall delay of the circuit to determine how to trade off
congestion and delay. A slack ratio is computed for each
connection in the circuit as the ratio of the delay of the
longest path using that connection to the delay of the
circuit's longest (i.e. most critical) path. Thus, every
connection on the longest path has a slack ratio of 1, while
connections on the least critical paths have slack ratios
close to 0. The inverse of the slack ratio gives the factor by
which the delay of a path can be expanded before the circuit
is slowed down.

The key idea behind the signal router is that connections
with a slack ratio close to 1 will be assigned greater weight
in negotiating for resources and consequently will be routed
directly (i.e. using a minimum-delay route) from source to
sink. Connections with a small slack ratio will have less
weight and pay more attention to congestion-avoidance
during routing. A net with multiple sinks (which
corresponds to several connections with varying slack
ratios) will be routed using a combined strategy, and will
not be constrained to either an overall minimum Steiner
tree or minimum-delay tree route. The slack mechanism
provides a smooth tradeoff between these two extremes.

3 PathFinder Algorithm

The routing resources in an FPGA and their connections are
represented by the directed graph G = (V, E). The set of
vertices V corresponds to the electrical nodes or wires in
the FPGA architecture, and the edges E to the switches that
connect these nodes. Associated with each node n in the
architecture is a constant delay dn and a congestion cost cn
determined by the competition among signals for n.

Given a signal i in a circuit mapped onto the FPGA, the
signal net Ni is the set of terminals including the source
terminal si and sinks tij. N i forms a subset of V . A
solution to the routing problem for signal i is the directed
routing tree RTi embedded in G and connecting si with all
its tij.

3.1 Negotiated Congestion Router

We will present the Negotiated Congestion (NC) algorithm
in this section, and then extend it to minimize delay in the
next section. The cost of using a given node n in a route is
given by

cn = (bn + hn) * pn (1)

where bn is the base cost of using n, hn is related to the
history of congestion on n during previous iterations of the
global router, and pn is related to the number of other
signals presently using n. A reasonable choice for bn is the
intrinsic delay dn of the node n since minimizing the delay
of a path in general minimizes the routing resources of a
path. In the remainder of this paper we set bn = dn.

(2) (3) (4) (3)(1) (1) (1)

(2) (3) (1) (1) (1) (4) (3)

AA B C

S S S

D D D

1 2 3

1 2 3

Figure 1. First order congestion

The hn and pn terms are motivated by the routing
problems in Figures 1 and 2. Figure 1 shows a first order
congestion problem. We need to route signals 1, 2, and 3
from their sources S1, S2, and S3 to their respective sinks
D1, D2, and D3. The arcs in the graph represent partial
paths, with the associated costs in parentheses. Ignoring
congestion, the minimum cost path for each signal would
use node B. If a simple obstacle avoidance routing scheme
is used, the order in which the signals are routed becomes

important. Some orderings will not be successfully routed.
Moreover, the total routing cost will be a minimum only if
we start with signal 2.

In the NC algorithm, the first-order congestion of Figure 1
is solved using the pn factor in our cost function (assuming
for the time being hn =0). During the first iteration of the
global router, pn is initialized to one, thus no penalty is
imposed for the use of n regardless of how many signals
occupy n. During subsequent iterations, this penalty is
gradually increased, depending on how many signals share
n. In the first iteration therefore, all three signals share B.
During some later iteration signal 1 will find that a route
through A gives a lower cost than through the congested
node B. During an even later iteration signal 3 will find that
a route through C gives a lower cost than through B. This
scheme of negotiation for routing resources depends on a
relatively gradual increase in the cost of sharing nodes. If
the increase is too abrupt, signals may be forced to take
high cost routes that lead to other congestion. Just as in the
standard rip-up and retry scheme, the ordering would become
important.

S S
2 3S1

D D2 3D1

(2) (1) (2) (1) (1)

(2) (1) (2) (1) (1)

A B C

Figure 2. Second order congestion

Figure 2 shows an example of second order congestion.
Again, we need to route three signals, one from each source
to the corresponding sink. Let us first consider this example
from the standpoint of obstacle-avoidance with rip-up and
retry. Assume that we start with the routing order (1, 2, 3).
Signal 1 routes through B, and signals 2 and 3 share node
C. For ripup and retry to succeed, both signals 1 and 2
would have to be rerouted, with signal 2 rerouted first.
Because signal 1 does not use a congested node, determining
that it needs to be rerouted will be difficult in general.

This second-order congestion problem cannot be solved
using pn alone. The term hn is required to successfully
route this problem. Each iteration that node C is shared, hn
is increased slightly. After enough iterations, the route
through C will become more expensive for signal 2 than
the route through B. Once B is shared by both signals 1 and
2, signal 1 will be rerouted through A, and the congestion
will be eliminated. The effect of hn is to permanently
increase the cost of using congested nodes so that routes
through other nodes are attempted. The addition of this term
to account for the history of congestion of a node is another
distinction between the NC algorithm and Nair’s.

The details of the NC algorithm are given below. The
signal router loop starts at step 2. The routing tree RTi
from the previous global routing iteration is erased and
initialized to the signal source. A loop over all sinks tij of
this signal is begun at step 5. A breadth-first search for the
closest sink tij is performed using the priority queue PQ in
steps 7-12. Fanouts n of node m are added to the priority
queue at cn + Pim, where Pim is the cost of the path from
si to node m.

After a sink is found, all nodes along a backtraced path from
the sink to source are added to RTi (steps 13-16), and this
updated RTi is the source for the search for the next sink
(step 6). In this way, all locations on routes to previously-
found sinks are used as potential sources for routes to
subsequent sinks. This is similar to Prim's algorithm for
determining a minimum spanning tree over an undirected
graph. This algorithm for constructing the routing tree is
identical to an algorithm suggested by [Takahishi80] for
constructing a tree embedded in an undirected graph. The
quality of the points chosen by the algorithm is an open
question for directed graphs; however, finding optimum (or
even near-optimum) points is not essential for the global
router to be successful in adjusting costs to eliminate
congestion.

Algorithm: Negotiated Congestion (NC)

While shared resources exist (global router) [1]
Loop over all signals i (signal router) [2]

Rip up routing tree RTi [3]
RTi <- si [4]
Loop until all sinks tij have been found [5]

Initialize priority queue PQ to RTi at cost 0 [6]
Loop until new tij is found [7]

Remove lowest cost node m from PQ [8]
Loop over fanouts n of node m [9]

Add n to PQ at cost cn + Pim [10]
End [11]

End [12]
Loop over nodes n in path tij to si (backtrace) [13]

Update cn [14]
Add n to RTi [15]

End [16]
End [17]

End [18]
End [19]

3.2 Negotiated Congestion/Delay Router

To introduce delay into algorithm NC, we redefine the cost
of using node n when routing a signal from si to tij as

Cn = Aij dn + (1 - Aij) cn (2)

where cn is defined in eq. (1) and Aij is the slack ratio

Aij = Dij / Dmax (3)

where Dij is the longest path containing the arc (si, tij),
and Dmax is the maximum over all paths, that is, the

critical path delay. Thus, 0 < Aij ≤ 1.

The first term of eq. (2) is the delay-sensitive term, while
the second term is congestion-based. Equations. (2) and (3)
are the keys to providing the appropriate mix of minimum-
cost and minimum-delay trees. If a particular source-sink
pair lies on the critical path, then Aij = 1 and the cost it
sees for using node n is simply the delay term; hence, a
minimum-delay route will be used and congestion will be
ignored. If a source-sink pair belongs to a path whose delay
is much smaller than the critical path, its Aij will be small
and the congestion term will dominate, resulting in a route
which avoids congestion at the expense of extra delay.

To accommodate delay, the NC algorithm is changed as
follows. First, the Aij are initialized to 1. Thus during the
first iteration the global router finds the minimum-delay
route for every signal. The Aij are recomputed each
subsequent iteration. Second, the sinks are routed in
decreasing Aij order. Third, the priority queue (line [6]) is
initialized to RTi at cost Aij dj . The net effect of this
initialization is that nodes that are already in the (partial)
routing tree will have only a delay component. We shall
refer to these modifications as the NCD algorithm, or
simply PathFinder, in the remainder of this paper.

The global router completes when no more shared resources
exist. Note that by recalculating the Aij , we have kept a
tight reign on the critical path. Over the course of
iterations, the critical path increases only to the extent
required to resolve congestion. This approach is
fundamentally different from other schemes ([Brown92],
[Frankle92]) which attempt to resolve congestion first, then
reduce delay by rerouting critical nets.

3.4 Delay Bounds

In this section we show that if hn is bounded by dn, then
algorithm NCD guarantees a worst case path delay equal to
the minimum delay route of the critical path. That is, in
this situation algorithm NCD achieves the fastest
implementation allowed by the placement. In practice, hn
is allowed to increase gradually until a complete route is
found. For very congested circuits, hn will exceed dn, but
as we show experimentally in Section 4, algorithm NCD
comes very close to this bound in practice.

Theorem 1 If hn <= dn for all nodes, then the delay of
any signal path routed by algorithm NCD is bounded by
Dmax, the delay of the longest minimum-delay path in the
circuit.

Proof sketch: When algorithm NCD terminates
successfully, the pn term in equation 2 is 1 and can be
ignored. Let R be the most critical routed path and S be the
shortest delay route for R. The cost of S is given by:

CS = cn
n ∈S

∑

= (Aij
n ∈S

∑ dn + (1 − Aij)(dn + hn))

= dn
n ∈S

∑ + (1 − Aij
n ∈S

∑)hn

Since hn ≤ dn ,

CS ≤ Dij + (1 − Aij
n ∈S

∑)dn

≤ Dij + (1 − Aij)Dij

≤ Dij + (DMAX − Dij)Dij / DMAX
Since Dij / DMAX ≤ 1 ,

CS ≤ Dij + DMAX − Dij

≤ DMAX

The cost of R must be less than the cost of S, thus the
delay of R must be less than the cost of S, which is less
than Dmax.

3.5 Enhancements

Several enhancements can increase the speed of the NCD
algorithm without adversely affecting the quality of the
route. One enhancement is to introduce the A* algorithm
into the breadth-first search loop. A* uses lower bounds on
path lengths to bound the breadth-first search. A* can be
applied to the congestion/delay router by tabulating the cost
of minimum-delay routes from every node to all the
potential sinks. During the first iteration, the search can be
made linear in the number of nodes along a minimum-delay
path. As iterations progress, increasing pn and hn cause this
lower bound to prove less and less useful, and the search
expands. As a result, the CPU time grows, but still
remains less than a full breadth-first search.

Another enhancement is to route only the signals involved
in congested nodes. This is a significant departure from
Nair’s original algorithm. If one examines the routing
problems in Figures 1 and 2 with this modification, the
same result is obtained as if one had rerouted all signals
during every iteration. To date we have not seen any cases
where routing only congested nodes resulted in a lower-
quality route. In our experience the number of iterations
increases, but the total running time decreases.

4 Results

We have performed experiments using PathFinder
(specifically algorithm NCD) on two different FPGA
architectures. We chose Triptych because the limited

routing resources would expose the limitations of the
algorithm, and Xilinx because this allowed comparison to
an FPGA router currently in wide use.

For both architectures the routing resources were described
using the schematic capture system WireC. The output of
the WireC system is a directed graph over all the routing
resources. All architectural information required by
PathFinder including delay information is contained in this
directed graph. Retargeting PathFinder to a new architecture
is a straightforward matter of modifying an existing
template or creating a new one; no code modifications to
the router are required. This approach provides a convenient
mechanism for changing configurations of routing resources
and examining the impact of these changes on the
routability of circuits.

4.1 Experiments on Triptych

The Triptych architecture is an array of 3-input blocks
([Hauck92]). These blocks, known as RLBs (Routing and
Logic Blocks) contain 3-input LUTs, as well as routing
resources that can route inputs through blocks to
neighboring blocks or onto buses. This approach is
markedly different from other FPGA architectures, notably
Xilinx, which place CLBs in a sea of routing resources. By
comparison, Triptych has considerably fewer routing
resources, many of which connect only nearest neighbors.
The placement problem is obviously coupled closely to the
routing problem. A placement program was constructed
using a simulated annealing approach, where the cost
function is composed of both a routing distance metric and
a metric that attempts to estimate routing congestion.
Even with these measures of routability included in the
placement cost function, PathFinder has the difficult
problem of allocating the relatively limited routing
resources to signals to achieve feasible source-sink routes.
Factoring in the delay of critical paths obviously
complicates the problem.

Bench Reps Logic
Levels

Optimal
Delay

Routed
Delay

% over
optimal

1 10 2 23.3 23.3 0.0%
2 4 6 57.3 57.3 0.0%
3 7 7 65.1 66.6 2.3%
4 2 14 123.3 125.3 1.6%
5 4 16 150.2 155.9 3.8%
6 8 16 134.2 138.0 2.8%
7 5 7 92.8 97.2 4.7%
9 5 10 61.6 62.6 1.6%

Table 1. Critical path delays for the PREP
benchmarks mapped to Triptych.

The results of our experiments are shown in Tables 1 and 2.
Covering with three-input functions was performed with the
SIS mapper. All circuits were mapped to an 8x64 array of
RLBs (512 total RLBs). Table 1 shows the results of
mapping the PREP benchmarks. The number of repetitions

(Reps) of any particular benchmark is determined by the
maximum that will fit in the 8x64 array when routed using
algorithm NC of Section 3.1. This insures a dense circuit
and is therefore a good test to determine how well the router
can optimize for delay when algorithm NCD of Section 3.2
is used.

The Logic Levels column in the table is the maximum
number of 3-input functions between registers. Optimal
Delay is a lower bound to the delay that can be obtained
given a placement. This number is obtained during the first
iteration of the router when only the delay term in the cost
function is present. Note that this number may not be
achievable when congestion is resolved due to competition
between critical routes for the same routing resources. The
Routed Delay column is the delay of the critical path after
convergence. % over optimal is the % degradation of the
Routed Delay from the Optimal Delay, which averages
2.1%, and is at worst 4.7%.

Benchmark Logic
Levels

Optimal
Delay

Routed
Delay

% over
optimal

ex1 8 76.1 79.7 4.7%
keyb 10 95.4 102.9 7.8%
C880 14 153.8 159.4 3.6%
clip 11 126.0 131.0 3.9%
C1908 15 161.9 171.3 5.8%
mm9b 14 128.2 128.3 0.0%
bw 7 89.6 98.1 9.4%
s832 11 117.0 118.1 1.0%
s820 10 112.8 114.7 1.7%
x1 7 84.1 94.7 12.6%
s953 10 101.7 103.8 2.1%
s1423 30 265.2 271.0 2.1%

Table 2. Critical path delays for selected circuits
from ISCAS93 mapped to Triptych.

Table 2 shows the results of running PathFinder on
benchmarks obtained from ISCAS93. All circuits in the
benchmark suite were included that utilized between 25%
and 50% of the 8x64 array for logic (i.e. between 128 and
256 RLBs). In this case the delay degradation from optimal
is an average of 4.6%, and is at worst 12.6%. The only
other work quoting delay degradation from optimal is that
of [Frankle92], in which an average degradation of 16% is
found on the Xilinx 4000 architecture.

4.2 Experiments on Xilinx 3000

Our WireC template for the Xilinx 3000 architecture
describes the entire routing structure of muxes, pips and
switchboxes ([Xilinx93]). All details were specified,
including routing resources to pads and clock buffers.
Through parametrization of the template, we were able to
describe both 3020PC68 and 3090PC84 parts.

Both CLB modes 'F' and 'FG' (corresponding to 5-input and
4-input functions) were supported; pin permutability for

each mode was specified by adding additional nodes to the
graph. Allowing the router to choose between input pin
permutations is an important degree of freedom that often
allows congestion in the neighborhood of the input pins to
be resolved. Lacking detailed information describing the
drive capability of individual muxes and pips, we used an
additive delay model based only upon the number of fanins
and fanouts of each node. In particular we did not
distinguish between restoring and nonrestoring routing
resources.

Tables 3 and 4 show the results for circuits taken from the
ISCAS93 benchmark suite when mapped to the Xilinx
3020PC68 part and the 3090PC84 part, respectively. All
circuits were fitted to Xilinx parts using the fpga tool from
Exemplar Logic, Inc. The Xilinx tools xnf2map, map2lca
and APR were used to map, place and route the circuits.
The table column Logic Levels is the number of CLBs on
the longest path, where a path begins at any flip-flop
output or IOB, and ends at any flipflop input or IOB. The
Xilinx tool Xdelay was used to calculate the delay of the
critical path, shown in the APR delay column.

PathFinder reads in an unrouted lca file and the directed
graph derived from the architecture template and performs
the route. The resulting assignment of routing resources is
written out in the lca format and checked for validity using
Xdrc. Although PathFinder performs a delay analysis itself,
the delay model is only qualitatively correct; therefore, to
make a direct comparison with the Xilinx results we ran
XDelay on our routed circuit. The results of running
XDelay on our routed circuits is shown under the delay
column. % from APR is the % difference from between this
number and APR delay.

PathFinder

Bench-
mark

CLBs Logic
Levels

APR
delay(ns)

Delay
(ns)

% over
APR

s400 46 5 47.9 51.9 +8.3%
s344 32 6 56.5 55.7 -1.4%
s382 50 6 61.1 57.4 -6.1%
s386 38 5 51.6 49.3 -4.4%
s420 20 4 40.4 41.0 +1.4%
s420.1 46 4 50.2 44.4 -11.6%
s444 46 5 54.2 51.9 -4.2%
s208.1 18 4 40.6 36.6 -9.8%

Table 3. Critical path delays for selected circuits
from ISCAS93 mapped to a Xilinx 3020PC68

The results from Table 3 indicate that PathFinder converges
on a route with a shorter critical path than APR. The
average is 3.5% shorter. It is notable that when we examine
our critical paths, they often contain multiple nonrestoring
pips in sequence. We would expect considerable
improvement in these critical path delays given a delay
model which distinguishes between restoring and
nonrestoring resources.

PathFinder

Bench-

mark

CLBs Logic
Levels

APR
delay (ns)

delay
(ns)

% over
APR

s1 116 8 113.5(fails) 91.1 -19.7%
9sym 76 11 134.8 124.1 -7.9%
9symml 99 18 197.9 182.9 -7.6%
alu2 123 18 270.8(fails) 243.3 -10.1%
dk16 128 7 78.5 79.5 +1.3%
duke2 99 7 141.5 106.5 -24.7%
ex1 75 7 120.3 117.9 -1.9%
keyb 74 8 112.7 86.6 -23.2%
planet 151 7 194.4(fails) 179.9 -7.5%

Table 4. Critical path delays for selected circuits
from ISCAS93 mapped to a Xilinx 3090PC84.

Of the nine 3090 circuits shown in Table 4, APR was
unsuccessful at routing three of them -- s1 (20 unrouted
pins), alu2 (12 unrouted pins), and planet (29 unrouted
pins). PathFinder was successful with all three circuits,
suggesting that our iterative approach to alleviating
congestion is an improvement over the standard obstacle
avoidance methods, such as that employed by APR. An
average of 11.3% improvement over the APR delays was
obtained on the circuits in Table 4. This is significantly
greater than that obtained for the 3020 circuits in Table 3
because the 3090 circuits have longer routes on average,
increasing the proportion of routing delay in the total delay,
which is the sum of logic and routing delays. It should be
noted that the percent improvement in the routing delay is
much larger than 11.3%, since the critical path delay
includes logic which is not affected by the router.

5 Conclusions and Future Work

We have presented PathFinder, a new, iterative routing
algorithm for FPGAs. Results on the Triptych FPGA
architecture show only a small degradation of critical path
delay from the optimum for a given placement, indicating
that the algorithm is minimizing congestion while meeting
delay constraints. Results on the Xilinx 3000 architecture
show a higher degree of routability as well as 11% shorter
critical paths than commercial tools are able to achieve.
This is especially encouraging given the lack of detailed
delay information on the routing resources in the Xilinx
3000 architecture.

Our conclusion from this work is that a carefully-designed
iterative approach to routing on a directed graph allows one
to optimize over multiple and, in some cases, competing
objectives. In the case of FPGAs this approach is
successful at optimizing delay while eliminating
congestion.

Acknowledgments

We want to thank Gaetano Borriello for helpful discussions
about routing for Triptych and Steven Yee for his
considerable help in constructing the Xilinx3000 template.

The authors also acknowledge Darren Cronquist and Scott
Hauck for suggestions to improve this manuscript. This
work was funded by the Advanced Research Projects Agency
under contract N00014-J-91-4041.

References

[Alexander94] M. Alexander, "A Unified New Approach to
FPGA Routing Based on Multi-Weighted Graphs,"
2nd International ACM/SIGDA Workshop on Field-
Programmable Gate Arrays, February 1994.

[Brown92] S. Brown, J. Rose, and Z. Vranesic, "A Detailed
Router for Field-Programmable Gate Arrays," IEEE
Transactions on Computer-Aided Design, vol. 11,
no. 5, May 1992, pp. 620-628.

[Cohn91] J. Cohn, D. Garrod, R. Rutenbar, and L. Carley,
"KOAN/ANAGRAM II: New Tools for Device-
Level Analog Placement and Routing," IEEE Journal
of Solid-State Circuits, vol. 26, March 1991, pp.
330-342.

[Dees81] W. Dees and R. Smith, "Performance of
Interconnection Rip-Up and Reroute Strategies," in
Proc. 18th Design Automation Conference, June
1981, pp. 382-390.

[Frankle92] J. Frankle, "Iterative and Adaptive Slack
Allocation for Performance-driven Layout and FPGA
Routing," in Proc. 29h Design Automation
Conference, June 1992, pp. 536-542.

[Hauck92] S. Hauck, G. Borriello and C. Ebeling,
“TRIPTYCH: An FPGA Architecture with Integrated
Logic and Routing,” in Proc. of the 1992 Conference
on Advanced Research in VLSI and Parallel Systems,
March 1992, pp. 26-43.

[Hill91] D. Hill, "A CAD System for the Design of Field
Programmable Gate Arrays," in Proc. 28th Design
Automation Conference, June 1991, pp. 187-192.

[Linsker84] R. Linsker, "An Iterative-Improvement
Penalty-Function-Driven Wire Routing System,"
IBM Journal of Research and Development, vol. 28,
Sept. 1984, pp. 613-624.

[Nair87] R. Nair, "A Simple Yet Effective Technique for
Global Wiring," IEEE Transactions on Computer-
Aided Design, vol. CAD-6, no. 6, March 1987, pp.
165-172.

[Takahashi80] H. Takahashi and A. Matsuyama, “An
Approximate Solution for the Problem in Graphs,”
Japonica, vol. 24, 1980, pp. 573-577.

[Xilinx93] Xilinx, Inc., Xact Development System, 1993.

	Compendium95
	FPGA95
	Front Matter
	Table of Contents
	Session Index
	Author Index

