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Abstract—We propose the high-level synthesis of an FPGA-
based hybrid computing system, where the implementations of
compute-intensive functions are available in both software, and
as hardware accelerators. The accelerators are optimized to
handle common-case inputs, as opposed to worst-case inputs,
allowing accelerator area to be reduced by 28%, on average, while
retaining the majority of performance advantages associated
with a hardware versus software implementation. When inputs
exceed the range that the hardware accelerators can handle, a
software fallback is automatically triggered. Optimization of the
accelerator area is achieved by reducing datapath widths based
on application profiling of variable ranges in software (under
typical datasets). The selected widths are passed to a high-level
synthesis tool which generates the accelerator for a given function.
The optimized accelerators with software fallback capability are
generated automatically by our framework, with minimal user
intervention. Our study explores the trade-offs of delay and area
for benchmarks implemented on an Altera Cyclone II FPGA.

I. INTRODUCTION

Improving computing performance by increasing clock
frequency is a trend of the past. The power and heat dissipation
limitations of today’s chips demand a more scalable approach
to raise computational throughput. A recent approach to deal-
ing with this challenge is that of heterogeneous computing. In
a heterogeneous computing system, performance and energy
efficiency are improved by implementing computations on
different types of computing cores and tailoring each core to
the specific type of computation for which it is used. Field-
programmable gate arrays (FPGAs) are an attractive platform
to implement such systems, as they can be configured to realize
any digital circuit. FPGAs can therefore be used to implement
accelerators that work in tandem with standard processors to
improve performance. In such a hybrid processor/accelerator
system, the processor executes sequential operations in soft-
ware, while the FPGA-based hardware accelerators efficiently
perform compute-intensive work in parallel. High-level synthe-
sis (HLS) [9] raises the level of abstraction for hardware design
by enabling a user to describe computations in software and
automatically obtain a hardware implementation. This makes
HLS a natural choice for the design and implementation of
FPGA-based accelerators in hybrid systems. This paper centers
on the high-level synthesis of FPGA-based accelerators in
hybrid systems, and in particular, presents a new approach for
optimizing accelerator area.

Traditionally, hardware design is constrained by worst-
case inputs. This means that even if significant hardware area
or power optimizations are possible for handling solely the

common-case inputs, such optimizations are not incorporated
into the design unless the resulting hardware can still correctly
handle every valid input case. Consider the simple example of
a ripple-carry adder, and assume that in most cases, the adder
inputs lie in the range of 0 to 100, yet in rare cases, inputs as
large as 1,000,000 may occur. The traditional approach calls
for a 20-bit adder, capable of handling the worst-case inputs.
However, if the adder need only handle the common cases, 7
bits is sufficient – a significant area reduction vs. the 20-bit
case. We propose to extend the concept illustrated by the adder
example to the design of entire accelerators in FPGA-based
processor/accelerator systems. That is, we propose to optimize
hardware accelerators for computations involving common-
case inputs and provide automatic detection and software
fallback (executed on the processor) for any cases that the
over-optimized hardware cannot handle.

Our overall approach is as follows: Given a program with
one or more functions intended for implementation as an
FPGA-based accelerator, we profile the program in software
using a common-case set of inputs to determine the maxi-
mum and minimum values of program variables. The profiled
variable ranges are passed to a compiler-based range analysis
tool [13], which propagates values forward and backward
through the program’s dataflow graph, potentially reducing
variable ranges further. Next, we modify the program’s inter-
mediate representation (assembly code) to add input-checking
functionality to the accelerator, consisting of comparing the
run-time values of variables with their common-case ranges
determined from profiling. For variables corresponding to
accelerator inputs (i.e. values loaded from memory), when a
run-time input value lies outside of its common-case range,
the accelerator returns an error to the processor. The processor
subsequently re-executes the computations in software for the
out-of-range inputs. The modified intermediate representation
of the program is passed to a high-level synthesis (HLS)
tool [7], which produces a bitwidth-optimized accelerator
capable of handling the common-case inputs and incorporating
the desired software fallback detection behavior. The result is a
hybrid system that delivers high performance for common-case
inputs by way of the area-optimized accelerators, and yet uses
considerably less area relative to a system with accelerators
that must support all inputs.

In an experimental study, we apply the proposed approach
to 7 benchmarks and assess the area and performance impact.
We demonstrate that, on average, area-reductions of 28% are
achieved vs. a baseline hybrid processor/accelerator system
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(generated by the HLS tool without bitwidth optimization).
For the common-case inputs, overall cycle latency (i.e. the # of
cycles needed for benchmark execution) is increased by 1.2
vs. the baseline, owing to the extra clock cycles needed for
checking input legality. Overall, the approach thus provides a
significant win in area-delay product, and we believe it will be
especially useful in area-constrained settings. As our approach
hinges on the early identification and profiling of common-
case inputs, a natural question that arises concerns the impact
of out-of-range inputs on cycle latency. Out-of-range inputs
trigger software fallbacks and re-execution on the processor,
thereby decreasing performance vs. deploying accelerators that
can handle all inputs. To analyze this, we present results show-
ing the increase in cycle latency across the benchmarks vs. the
fraction of out-of-range inputs. To the authors’ knowledge, the
proposed use of bitwidth-optimized accelerators for common-
case inputs in conjunction with software fallbacks represents
a new approach to the optimization of hybrid systems.

The remainder of this paper is organized as follows:
Section II presents background on hybrid processor/accelerator
systems, high-level synthesis and range analysis. Section III
describes our proposed framework, incorporating profiling,
range analysis, and the automatic insertion of software fall-
backs for hardware-accelerated functions in the targeted sys-
tem. An experimental study is presented in Section IV. Sec-
tion V offers conclusions and suggestions for future work.

II. BACKGROUND

A. High-Level Synthesis (HLS) for Hybrid Systems

We implemented the proposed approach within the LegUp
open-source high-level synthesis framework, developed at the
University of Toronto [7]. LegUp automatically synthesizes
a C benchmark program to a hybrid FPGA-based proces-
sor/accelerator system. The user specifies which C functions
(and their descendants) should be realized as hardware accel-
erators, with the remaining functions executing in software
on a MIPS soft processor [21]. For the hardware-designated
functions, LegUp automatically deletes the original version
of the functions from the software and replaces them with
wrapper functions that invoke the accelerators, pass arguments
and receive results via a memory-mapped bus interface –
Altera’s Avalon interface [1].

Fig. 1 shows the system architecture produced by LegUp.
The processor and accelerators share a memory hierarchy,
comprising a L1 cache (implemented on the FPGA), as well
as off-chip memory. The architecture permits the processor
and accelerators to share data with one another in two ways:
1) across the on-chip bus interface, or 2) through shared
memory. Two Altera boards are supported by LegUp: Altera’s
Cyclone II-based DE2 board, and the Stratix IV-based DE4
board.

High-level synthesis in LegUp is implemented as back-
end compiler passes within the open-source LLVM (low-
level virtual machine) compiler framework [18]. LLVM parses
the input C program, then transforms it into an intermediate
representation (IR). The IR resembles machine-independent
assembly code, with primitive instructions for computations
and control. LLVM then performs a set of standard compiler
optimizations on the IR, e.g. dead code elimination, constant
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Fig. 1: Hybrid processor/accelerator architecture on FPGA.

folding, etc. LegUp accepts the optimized IR as input, performs
high-level synthesis, and produces Verilog RTL for the selected
accelerators. The Verilog can then be synthesized by vendor
tools, such as Altera’s Quartus II. Altera’s SOPC Builder tool
is used to connect the accelerators to the MIPS processor.

B. Range Analysis

The C language defines a set of standard datatypes which
are 8, 16, 32, or 64 bits in length. This coarse quantization
inevitably leads to the use of more bits than are actually
required to represent program variables. There is little advan-
tage for a programmer to optimize the bitwidths of variables,
as processor datapaths are of fixed width. However, when a
program is synthesized to hardware using HLS, optimizing
the bit-level representation of variables leads directly to circuit
area and power reductions [11].

Range analysis determines the maximum and minimum
values that a program’s variables take on during execution,
thereby permitting a reduction in the number of bits needed to
represent the variables. There are two forms of range analysis:
static and dynamic. Static analysis infers ranges solely using
information available at compile-time, such as constants in the
code. For example, a loop index i that ranges from 0 to 100
(specified as constant in the code) can be represented using 7
bits. Such ranges are then propagated forward and backward
through the program’s dataflow graph [13], [19], allowing
ranges for other variables to be inferred. Bitwidth reductions
made via static analysis preserve program correctness; the
program will execute correctly for all input datasets. Dynamic
range analysis, on the other hand, infers ranges based on run-
time information under a particular input dataset, permitting
greater bitwidth reductions, with the caveat that the bitwidth-
reduced program is no longer guaranteed to work for all inputs.

A number of approaches to bitwidth minimization have
been proposed in recent literature, including [15] which min-
imizes bitwidths subject to user-specified accuracy require-
ments, and [17] which employs SAT-modulo theory. MiniBit
[16] uses a static analysis technique via affine arithmetic to
optimize bitwidths of fixed-point designs. Range analysis is
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Fig. 2: Hybrid design flow for HLS of hardware accelerators
with software fallback.

used to target integer bits, while precision analysis is applied
to fraction bits. [22] introduces a static bitwidth minimization
algorithm capable of reducing slice usage by almost 30%. The
work in [5] uses dynamic analysis to determine bitwidths,
subject to an allowable error constraint. The recent release
of LegUp HLS (ver. 3.0) includes both static and dynamic
range analysis [13], which we leverage in our research. Note
that while we choose to use the static and dynamic analysis
algorithms implemented by [13], our work is orthogonal to the
particular bitwidth minimization approach used.

The work in [13] demonstrated an average area reduction
of 9% using static range analysis, and a 34% area reduction
with dynamic analysis. However, the dynamic analysis results
in [13] are lower bound circuit areas, as the circuits are no
longer correct for all inputs. Our work aims to provide most
of the area-reduction benefits of dynamic range analysis, while
retaining functional correctness.

III. BITWIDTH-OPTIMIZED ACCELERATORS WITH
SOFTWARE FALLBACK

We now delve into our proposed approach for optimizing
the area of accelerators to handle common-case inputs, with
software fallback to handle the worst-case inputs.

Fig. 2 shows the flow of our optimization framework,
which surrounds and makes use of the LegUp high-level
synthesis tool. The left side of the diagram shows profiling
(in purple) and the hardware flow (in green), which result in a
Verilog hardware description of the area-optimized accelerator
in the hybrid system. The right side of the diagram shows the
software flow (in blue) which produces an executable to be
run on the MIPS microprocessor.

The flow begins with a C program example.c provided by
the user. The user also provides a Tcl file (not shown in the di-
agram) to identify which function(s) to accelerate in hardware.
In step 1, the C program example.c is transformed into the
LLVM intermediate representation (IR) and standard compiler
optimizations are applied (LegUp’s default optimization level
is -O3).

1: %28 = load i32* %ptr, align 4

+ 2: %check1 = icmp sgt i32 %28, 511
+ 3: br i1 %check1, label %Invalid,label %L1
+ 4: L1:
+ 5: %check2 = icmp slt i32 %28, -512
+ 6: br i1 %check2, label %Invalid,label %L2
+ 7: L2:

8: %29 = add nsw i32 %28, %27
9: ret i32 %29

+10: Invalid:
+11: volatile store i32 1,i32* @global_status
+12: ret i32 -1

Fig. 3: Intermediate Representation (IR) of accelerated func-
tion with inserted comparison and branch instructions (marked
(+) for HLS of comparators in the hardware accelerator.

In step 2, the program is dynamically profiled by execution
with a common-case input dataset (provided by user) to
characterize the ranges of program variables. Dynamic pro-
filing is done using the LLVM interpreter, which can directly
execute the program’s optimized intermediate representation,
as produced in step 1. We modified the interpreter to track and
report the minimum and maximum value each variable in the
IR takes on during its execution. The ranges of variables from
dynamic profiling are provided to the compiler-based range
analysis tool described in [13], which propagates them through
the dataflow graph, tightening the ranges further. At the end
of this step, we determine the number of bits needed for each
variable to handle the common-case inputs. Note that each
variable can have a different number of bits; that is, we permit
non-uniform bitwidths. The computed bitwidths will be used in
the high-level synthesis of the accelerators (in step 4 discussed
below).

In step 3, we modify the IR of the functions designated
for implementation as hardware accelerators. We add input-
checking functionality to ensure that inputs lie within the
common-case ranges determined in step 2. When inputs fall
outside the range, the accelerator will exit early and indicate to
the processor that software fallback is needed. Fig. 3 shows a
portion of the IR of a function selected for implementation as
a hardware accelerator. The lines without a + are the original
IR, prior to our modifications; the lines with a + were inserted
automatically by our tool. Though a detailed explanation of
the LLVM IR is outside the scope of this paper, the example
nevertheless serves to illustrate our approach. Observe that
the original IR consists of a load instruction followed by
an addition (add) instruction whose result is returned to the
processor (ret) (see lines 1, 8 and 9). Assuming that the
load instruction corresponds to an input to the accelerator,
our tool inserts compare/branch instructions to check whether
the input value is larger than the maximum of the common-
case range, or smaller than the minimum of the common-case
range, and if so, branch accordingly to the exit-early case.
Indeed, line 2 contains an integer compare (icmp) instruction
that checks whether the value loaded is higher than 511.
Line 3 is a branch instruction (br) that branches to the code
labelled Invalid (exit-early code) in lines 10-12 if the input
value is higher than 511. The exit-early code stores a 1 in
a special memory address called global_status (line 11),
and returns early to the processor (line 12). The processor will
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1: int AccelFunc_wrapper(int arg1, int* arg2) {
2: *AccelFunc_ARG1=(volatile int) arg1;
3: *AccelFunc_ARG2=(volatile int) arg2;
4: *AccelFunc_STATUS=1;

+ 5: //check if accel returned prematurely
+ 6: if (global_status){
+ 7: printf("Software fallback ...");
+ 8: return AccelFunc(arg1, arg2);
+ 9: }
+10: //otherwise return accelerator result
+11: else
12: return *AccelFunc_DATA;
13: }

Fig. 4: Software wrapper C code to call hardware accelerator.
Lines marked ”+” are inserted into original wrapper to check
for and execute software fallback if necessary.

check the memory address to determine if software fallback is
needed. Lines 5 and 6 check the analogous case of the input
being smaller than the minimum of the common-case range.
It is important to realize that the additional compare/branch
instructions are only inserted to check data received from
load instructions that correspond to accelerator inputs; that is,
additional instructions are not inserted to check intermediate
program values computed by math or logical operations.

In step 4 of Fig. 2, we use the LegUp HLS tool to
generate a Verilog description of a bitwidth-optimized accel-
erator whose functionality is defined in step 3. The com-
pare/branch instructions inserted in the IR result in the high-
level synthesis of additional comparators in the accelerator
circuit, and additional states in its finite state machine. In our
experimental study, we assess area and performance overhead
of the additional hardware complexity.

On the software side, in step 5, we generate a software
wrapper for each accelerated function, as shown in Fig. 4. As
above, the lines with a + are the result of modifications we
make to the LegUp flow, while the lines of the original LegUp-
generated wrapper have no +. Beginning with the original
LegUp wrapper code, lines 2 and 3 are memory-mapped writes
that pass function arguments to the accelerator over the Avalon
interface1. Line 4 is a memory-mapped write that invokes the
accelerator, and line 12 is a memory-mapped read that retrieves
the value returned by the accelerator. While the accelerator
is operating, the processor is stalled. Our tool inserts line 6,
which checks the special memory address discussed above to
determine if software fallback is necessary, and if so, invokes
the software version of the function (line 8), executed on the
MIPS.

In step 6, the software IR is compiled by LLVM to MIPS
machine code. Finally, in step 7, we use Altera’s SOPC Builder
to integrate the hardware accelerators with the microprocessor
hardware [3].

One important condition for successful software fallback
execution in our hybrid system is that an accelerated function
must not overwrite its inputs. Hardware accelerators that
operate on data ”in place” in memory will corrupt inputs with

1AccelFunc_ARG1 and AccelFunc_ARG2 are pointers to memory
addresses defined automatically by LegUp in the hybrid system. Writes to
these addresses correspond to data transfers across the Avalon interface.

intermediate results. If the accelerator detects out-of-range data
half-way through execution, when the system re-executes the
function in software, memory accesses will retrieve corrupted
values stored by the accelerator. Thus, we limit our study
to functions that do not overwrite their inputs and do not
write to shared global memory in a manner that would prevent
successful software fallback if required.

Finally, it is worth pointing out that our flow (Fig. 2) is
completely automated, requiring minimal user intervention.

IV. EXPERIMENTAL STUDY

In this section, we present our experimental study of
the proposed bitwidth-optimized accelerators with software
fallback. Among the benchmarks included with the LegUp tool
[7] distribution, we select the 7 benchmarks that satisfy the
following two criteria: 1) the benchmark does not overwrite
its input values in memory, and 2) the area reduction of the
benchmark’s accelerator is significantly greater using dynamic
range analysis compared to static range analysis. The first
criterion is necessary for correct execution of a software
fallback, as described in Section III. The second criterion is
desired for applications of our proposed method of bitwidth
optimization in order to obtain notable area reduction beyond
the reductions achieved with static range analysis. For each of
the benchmarks below, we select the most compute-intensive
function (and its descendants) to implement as a hardware
accelerator. Each benchmark calls the accelerator multiple
times with different inputs. The 7 benchmarks used are:

1) Dhrystone: The well-known classic integer bench-
mark. The accelerator is called 20 times, once for
each run of the entire benchmark.

2) LOS: The line of sight (LOS) benchmark uses the
Bresenhams line algorithm [6] to determine whether
each pixel in a 2-dimensional grid is visible from the
source [8]. The hardware accelerator is called 512
times (once for each horizontal line).

3) Histogram: The histogram benchmark accumulates
36,000 integers into 5 equally-sized bins. The hard-
ware accelerator is called 100 times on different
portions of the input to complete the task.

4) ADPCM: The adaptive differential pulse code mod-
ulation (ADPCM) decoder and encoder benchmark
is part of the CHStone suite [14]. We accelerate the
encoder function and call it 100 times.

5) GSM: This benchmark is adopted from the CHStone
benchmark suite [14]. We accelerate the autocorre-
lation function (part of linear predictive coding) and
call the accelerator 100 times.

6) FIR: This benchmark implements a finite impulse
response (FIR) filter, calling a hardware accelerator
512 times.

7) Black-Scholes: A quantitative finance benchmark to
value options using a Monte Carlo approach. We call
the hardware accelerator with 10 different random
generator seeds.

The HLS-generated hybrid systems considered in this study
are targeted to the Altera Cyclone II 90 m FPGA. Perfor-
mance is evaluated by simulating each circuit in ModelSim
to determine the number of cycles required to execute the
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Accelerator 
Configuration 

Input checking 
functionality in HW? 

Bitwidth Reduction Method  

Orig   No   None  

Static   No   Static  analysis  

Dyn-‐orig     No   Dynamic  analysis  

Dyn-‐SWF   Yes   Dynamic  analysis  

TABLE I: Hardware configurations for test scenarios.

benchmark and return the correct result; we refer to this as
the benchmark’s cycle latency. We also assess and report each
circuit’s clock frequency (Fmax) after placement and routing by
Altera’s Quartus II tool [4]. Circuit area is measured by the
number of Cyclone II Logic Elements (LEs), where each LE
is composed of a 4-input look-up-table (LUT) and a flip-flop.

Table I lists the flows and hardware configurations tested,
and defines the notation used throughout the rest of this
paper. The orig configuration involves no bitwidth reductions
or modifications to the accelerator in high-level synthesis
(i.e. default LegUp), thus serving as the baseline test for area
comparisons. Note that although the orig configuration does
not make use of static or dynamic range analysis to reduce
bitwidths during HLS, RTL synthesis within Altera’s Quartus
II includes static bitwidth reduction as part of its standard set
of optimizations. The two configurations static and dyn-orig
represent static and dynamic bitwidth reduction, respectively,
in HLS using the techniques in [13]. Recall that, as mentioned
above, the dyn-orig systems only work for the profiled inputs
– they are not guaranteed to work for all inputs. Finally, the
dyn-SWF configuration represents the systems generated by
the proposed techniques: bitwidth-optimized hardware with
software fallback. By comparing the performance and area
of dyn-orig and dyn-SWF, we can determine the overhead
associated with incorporating out-of-range input detection and
software fallback capability into the accelerators.

Fig. 5 shows the percentage reduction in circuit area
achieved by reducing the bitwidth of variables for the static,
dyn-orig and dyn-SWF configurations. On average, we find
that accelerator circuit area is reduced by 7.2% with static
range analysis (static configuration) and 33% with dynamic
range analysis (dyn-orig configuration). The static and dynamic
results align very closely to those reported in [13]. Due to
the extra area overhead associated with comparators for input
checking, required to detect inputs that fall outside of the
profiled range, the effective circuit area reduction with dynamic
range analysis is 28% (dyn-SWF configuration). Thus, we
observe that most of the area-reduction benefits offered by
dynamic range analysis are retained in dyn-SWF, even with
the added hardware complexity needed to incorporate software
fallback. The Dhrystone benchmark actually benefits from a
6% decrease in circuit area when comparators are added to
the circuit. The decrease in circuit area is attributed to the
ability of the Quartus II synthesis tool to simplify the existing
circuit based on the constants fed into the new comparators
(perhaps through the tool’s own internal constant propagation
pass). To verify this, we manually increased the comparison
values in the Verilog hardware description of the accelerator
(generated automatically by our flow) to large 32-bit constants

static dyn-orig dyn-SWF
Dhrystone 1 27 33
LOS 0.5 22 18
Histogram 0 23 23
ADPCM 13.3 56 43
GSM 0.2 18.3 8.3
FIR 7.7 28 20
Black-Scholes 28 53 53
Average 7.2 32.5 28.3
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Fig. 5: Percentage area reduction of hardware accelerator
synthesized with static and dynamic analysis.
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Fig. 6: Area overhead for implementation of input-checking
functionality on hardware accelerators with reduced bitwidths.

and re-synthesized the circuit. As a result of our comparator
modifications, the area of the dyn-SWF configuration increased
with the introduction of a 1.3% comparator area overhead.
The modified dyn-SWF accelerator’s area reduction was 26%
instead of 33% compared to orig.

Fig. 6 shows the area overhead associated with adding
comparators into the hardware accelerators. The overhead
is determined by the area difference between the dyn-SWF
and dyn-orig hardware configurations as a percentage of the
total dyn-SWF hardware accelerator area. The average area
overhead is 6.7% – an acceptable overhead considering the
accelerator circuit area reduction of nearly 30% in the dyn-
SWF configuration vs. the baseline case. The Black-Scholes
benchmark shows the highest dyn-SWF area reduction (53%)
and almost no comparator area, as there are only two load in-
structions in the accelerated function, thus only 2 comparators
are synthesized. The ADPCM benchmark shows the highest
comparator overhead (22%) but also a high overall circuit area
reduction of 43% compared to the orig configuration.
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(c) Histogram
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(d) ADPCM

orig static dyn-orig dyn-SWF

Delay (cycles) 1498549 1498549 1498549 1730118

Area (# LEs) 19744 18944 15518 17402

0

5

10

15

20

25

1350

1400

1450

1500

1550

1600

1650

1700

1750

AREA 
(# LEs) 

Th
o

u
sa

n
d

s 

DELAY  
(cyles) 

Th
o

u
sa

n
d

s 

(e) GSM

orig static dyn-orig dyn-SWF

Delay (cycles) 135251 135251 135251 203454

Area (# LEs) 8815 8147 6374 7025

0

1

2

3

4

5

6

7

8

9

10

0

50

100

150

200

250

AREA 
(# LEs) 

Th
o

u
sa

n
d

s 

DELAY  
(cycles) 

Th
o

u
sa

n
d

s 

(f) FIR

orig static dyn-orig dyn-SWF

Delay (cycles) 189712 189712 189712 191797

Area (# LEs) 117332 84577 54964 55267

0

20

40

60

80

100

120

140

188.5

189

189.5

190

190.5

191

191.5

192

AREA 
(# LEs) 

Th
o

u
sa

n
d

s 

DELAY  
(cycles) 

Th
o

u
sa

n
d

s 

(g) Black-Scholes

Fig. 7: Area and delay results for each benchmark.

Fig. 7 shows the area and cycle latency results for each
benchmark in detail. In each graph, the red curve represents
accelerator area (# of LEs) and the dotted blue curve represents
the delay (in cycles). For each benchmark, we observe a
noticeable area reduction between the static and dynamic
analysis, with a slight increase when comparators are added
in the dyn-SWF configuration. We also observe that the static
and dyn-orig configurations have the same cycle latency as the
original program in the hybrid system. However, cycle latency
increases by 1.2 on average for the dyn-SWF configuration
due to the extra instructions inserted to check each input
against the minimum and maximum values supported by
the hardware; these instructions increase the lengths of the
schedules produced by HLS.

The delay results for the dyn-SWF configuration in Fig. 7
assume that the profiled input dataset exactly characterizes
the run-time input range and thus, no software fallback is
necessary. However, there may naturally exist cases for which
it is impossible to exactly characterize an accelerator’s input

dataset prior to field deployment. As such, the accelerator may
experience some inputs that fall outside of the profiled range,
triggering fallback to software and higher cycle latencies.
Fig. 8 gives results showing how cycle latency for each
benchmark is affected as the number of out-of-range inputs
increases. The horizontal axis represents the percentage of
out-of-range inputs; the vertical axis shows the delay penalty
associated with falling back to software, normalized to the
case of ”perfect” characterization (i.e. no accelerator inputs
triggering software fallback). We produced the data in the
figure by deliberately invoking the accelerators with varying
numbers of out-of-range inputs, and performing ModelSim
simulation to determine the cycle latency impact of running
those cases on the MIPS processor.

Fig. 8 shows that the delay penalty for execution in
software vs. hardware increases linearly with the percentage of
out-of-range accelerator inputs. The delay penalty is under 2 ,
on average, when less than 15% of run-time datasets exceed
the range of the profiled (common-case) dataset. If the profiled
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Fig. 8: Software fallback delay increase penalty in relation to
the percentage of out of range input datasets.

dataset poorly characterizes the ranges of run-time variables
such that only half the run-time datasets fit within the range of
the profiled dataset, the delay penalty is over 4 , on average.
Thus, we emphasize that our method is most beneficial for
applications whose input datasets are well-characterized at
the design stage, without significant variation in the field.
Among the benchmarks in our study, Dhrystone, ADPCM, and
Histogram show the least delay increase as the number of cases
handled in software increases. The Black-Scholes benchmark
shows the most drastic trade-off between delay and area. The
benchmark shows the highest accelerator area reduction but
also the highest delay penalty for execution in software. The
high delay penalty is particularly a drawback for the Black-
Scholes benchmark because the application is based on random
number generation, making the run-time input dataset difficult
to characterize with a single dataset. Thus, although we have
shown that the Black-Scholes hardware accelerator area can
be reduced by more than half using dynamic analysis, due to
the high software fallback delay penalty, Black-Scholes is not
a benchmark for which we would recommend applying our
method.

In Table II we show the speedup of our hybrid system
compared to a software-only implementation executed on the
Tiger MIPS microprocessor [21]. We observe that executing
on dyn-orig configured hardware accelerators provides a 8.3
speedup compared to software, on average. The 7.7 average
speedup reported in the dyn-SWF 0% column of Table II
shows that most of the performance benefits of a hardware
vs. software implementation are preserved after the addition
of comparators for out-of-range input checking. When 5% of
calls to the accelerator are handled in software, the speedup
of the hybrid system vs. a software-only implementation is
4.3 on average. When 10% of cases fallback to software, the
speedup of the hybrid system decreases to 3.3 on average.

Table III summarizes the area reduction, area overhead and
delay increase results for the cases of 0 software fallbacks and
10% of cases handled in software. On average, our method
of area optimization for common-case inputs provides a 28%
accelerator area reduction vs. the baseline with no bitwidth

Benchmark Dyn-orig 
 

Dyn-SWF  
0% 

Dyn-SWF  
5% 

Dyn-SWF  
10% 

Dhrystone 2.9x   2.5x   2.3x   2.1x  

LOS 9.5x   9.1x   5.8x   4.2x  

Histogram 3.1x   2.7x   2.5x   2.3x  

ADPCM 2.0x   1.8x   1.7x   1.6x  

GSM 1.8x   1.6x   1.5x   1.5x  

FIR 7.9x   5.2x   4.2x   3.6x  

Black-Scholes 31.1x   30.8x   12.4x   7.7x  

AVERAGE 8.3x 7.7x 4.3x 3.3x 

TABLE II: Speedup of our hybrid system compared to a
software-only implementation on Tiger MIPS microprocessor.
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Fig. 9: Increase in maximum accelerator operating frequency
for static, dyn-orig and dyn-SWF configurations compared to
orig.

minimization in accelerators, where 7% of area is com-
parator overhead. When no inputs require software fallback,
cycle latency is 1.2 that of the dyn-orig/static configuration,
whereas falling back on software for 10% of cases results in
a delay increase of 1.9 , on average. Overall, the proposed
approach provides significant area reductions, at a modest
performance hit, which we believe will be particularly useful
in area-constrained embedded applications.

We also examined the effect of bitwidth reduction on circuit
timing by measuring the maximum frequency, Fmax, reported
by the Quartus II tool after placement and routing. Fig. 9 shows
the ratio of Fmax for each hardware configuration in relation
to Fmax of the orig hardware accelerator configuration. For
5 out of 7 benchmarks, the maximum operating frequency of
accelerators increases after the application of static or dynamic
range analysis for bitwidth optimization (the ratio plotted in
Fig. 9 is greater than 1 for these benchmarks). On average,
the dyn-orig configuration allows for the highest operating
frequency (9% greater than the original Fmax) and the dyn-SWF
configuration closely follows, allowing for an 8% increase to
the original Fmax. Static analysis alone allows for a 5% increase
in frequency compared to the baseline. Fmax measurements
for the LOS and FIR benchmarks were dominated by noise
introduced by the stochastic nature of the FPGA place and
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Benchmark Accelerator Area 
Reduction 

Comparator 
Area Overhead  

Delay  Increase 
for 0% in SW 

Delay Increase 
for 10% in SW 

Dhrystone 33%   0%   1.2X   1.4X  

LOS 23%   4%   1.1X   2.2X  
Histogram 23%   2%   1.2X   1.4X  

ADPCM 43%   22%   1.1X   1.2X  
GSM 22%   11%   1.3X   1.2X  
FIR 20%   8%   1.5X   2.2X  
Black-Scholes 53%   0%   1.0X   4.0X  
AVERAGE 28% 6.7% 1.2X 1.9X 

TABLE III: Area and delay summary for hybrid system with
dyn-SWF configured hardware accelerator.

route process. In general, we found that Fmax measurements
varied depending on the fitter seed provided to the Quartus II
tool. The results presented in Fig. 9 are the average frequencies
measured across 3 different fitter seeds. Fig. 9 shows that for
the majority of benchmarks in this study, our common-case
bitwidth optimization method allows for not only circuit area
reduction, but also circuit simplifications that decrease critical
path delays.

V. CONCLUSION

Hybrid computing architectures are becoming increasingly
common as system architects seek to distribute computation
across multiple resources to improve performance. High-level
synthesis is a powerful tool which can play an important role
in developing hybrid processor/accelerator systems. However,
in order to be broadly embraced by industry, HLS tools
must first overcome the primary obstacles associated with
automated hardware design: area and delay overhead. Our
work aims to bridge the gap between high-level synthesis and
human-customized hardware design by allowing HLS tools
to synthesize circuits tailored for common-case inputs, thus
optimizing hardware bitwidths beyond the traditional limits.

In this work, we have shown that optimizing accelerator
area for common-case inputs using dynamic analysis results
in accelerator circuit area reduction of 28%, on average. We
have shown that the synthesis of comparators for software
fallback checking required by our common-case area opti-
mization method presents a 7% overhead and a 1.2 cycle
latency increase. Cycle latency in our hybrid system increases
depending on how often the accelerator is called with input
datasets containing values outside of the common-case range.
If 10% of function calls must be executed in software, the
cycle latency is 1.9 greater than if all cases were executed
by the hardware accelerator. We conclude that optimizing
accelerators for common-case inputs is a useful technique for
reducing circuit area in applications where run-time inputs
do not contain many outliers and thus a software fallback is
rarely necessary. Future work involves studying the impact of
common-case bitwidth reduction on the power and energy-
efficiency of a hybrid processor/accelerator system.
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