
Automating the Design of Processor/Accelerator
Embedded Systems with LegUp High-Level Synthesis

Blair Fort, Andrew Canis, Jongsok Choi, Nazanin Calagar, Ruolong Lian, Stefan Hadjis, Yu Ting Chen,
Mathew Hall, Bain Syrowik, Tomasz Czajkowski∗, Stephen Brown, Jason Anderson

Dept. of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
∗Altera Toronto Technology Centre, Toronto, Ontario, Canada

Email: legup@eecg.toronto.edu

Abstract—LegUp [1] is an open-source high-level synthesis
(HLS) tool that accepts a C program as input and automatically
synthesizes it into a hybrid system. The hybrid system comprises
an embedded processor and custom accelerators that realize
user-designated compute-intensive parts of the program with
improved throughput and energy efficiency. In this paper, we
overview the LegUp framework and describe several recent
developments: 1) support for an embedded ARM processor, as
is available on Altera’s recently released SoC FPGA; 2) HLS
support for software parallelization schemes – pthreads and
OpenMP; 3) enhancements to LegUp’s core HLS algorithms
that raise the quality of the auto-generated hardware; and, 4) a
preliminary debugging and verification framework providing C
source-level debugging of HLS hardware. Since its first release
in 2011, LegUp has been downloaded over 1000 times by
groups around the world, providing a powerful platform for new
research in high-level synthesis algorithms and embedded systems
design.

I. INTRODUCTION

Embedded systems typically include a processor in combi-
nation with some dedicated hardware accelerators. The pro-
cessor is used to run software programs that solve relatively
simple tasks needed in the embedded system, and the hardware
accelerators are used for compute- or energy-intensive tasks
for which a processor is not efficient. It is well known (e.g. [2])
that hardware implementations of algorithms can often result
in an order of magnitude, or more, improvement over the same
algorithms when executed in software on a processor. These
improvements may be in computational speeds, energy usage,
or both. A significant challenge, however, is that hardware
design often requires significantly more effort and expertise in
comparison to software development, and the needed expertise
is not readily available.

High-level synthesis (HLS) refers to the automated synthesis
of a hardware circuit from a software program, with the
promise of offering hardware’s advantages to those with only
software skills. While the concept of HLS is not new [3] it
has only recently gained traction in the industry as a viable
alternative to hardware design using hardware description
languages (HDLs). Possible reasons for an improved pop-
ularity of HLS include: 1) HLS tools have become more
readily available at lower costs, and produce better results than
previous tools, 2) hardware platforms, such as FPGAs, have
become large enough to justify the need for higher-level design
approaches, due to the inherent difficulty of developing very
large circuits by using hardware description languages, and
3) shorter lifecycles for electronic products, emphasizing the

need to produce products quickly.
Field-programmable gate arrays (FPGAs) are computer

chips that can be programmed by the end-user to implement
any digital circuit. FPGAs can be thought of as “configurable”
computer hardware, making them an ideal platform to realize
HLS-synthesized accelerators. While there is naturally a gap in
some metrics (area, speed and power) between HLS hardware
and hand-crafted hardware, the “cost” of that gap is more
tolerable in the FPGA context relative to custom silicon. For
this reason, we believe FPGAs will be the technology through
which HLS enters the mainstream of HW design. Indeed,
the two largest FPGA vendors have invested heavily in HLS
technologies in recent years [4], [5].

In this paper, we describe LegUp [1], an open-source HLS
tool being developed at the University of Toronto. LegUp
synthesizes a C-language program into an FPGA-based hybrid
system comprising a processor and one or more accelerators
that, together with the processor, implement the program with
improved area efficiency, speed and power vs. the use of
software alone. LegUp can also be used in a more traditional
HLS flow, to synthesize an entire program to hardware.
Active research on LegUp can be categorized into four thrusts
overviewed in subsequent sections of this paper: 1) Support for
an ARM hard processor, as available on the recently released
Altera Cyclone V SoC [6]; 2) improving performance of the
syntesized HW by increasing parallelism using approaches
such as better scheduling; 3) improvements to the synthesized
memory architecture and support for HW multi-cycling to
raise clock frequency; and 4) a debugging framework that
provides gdb-like debugging functionality for HLS hardware.

II. SYSTEM OVERVIEW

LegUp leverages the state-of-the-art LLVM (low-level vir-
tual machine) compiler framework for high-level language
parsing and its standard compiler optimizations [7]. We in-
tegrated the hardware synthesis process as back-end compiler
passes within LLVM.

Fig. 1 illustrates the LegUp design flow. The designer
starts with the software implementation of the application in
standard C code. At step À, the C program is compiled to
a binary executable targeting a processor. While the program
executes on the processor [8] at step Á, a hardware profiler [9]
collects the profiling data and identifies the critical sections of
the program that can benefit most from hardware acceleration.
At step Â, the user, based on the profiling data, marks specific
functions to be synthesized into hardware accelerators. At

Program code

C Compiler
Processor

(MIPS)

Self-Profiling

MIPS Processor

Profiling Data:

Execution Cycles

Power

Cache Misses

High-level

synthesis Suggested

program

segments to

target to

HW

FPGA fabric

µP Hardened

program

segments

Altered SW binary (calls HW accelerators)

....

y[n] = 0;

for (i = 0; i < 8; i++) {

y[n] += coeff[i] * x[n-i];

}

....

1

2

3

LegUp

6

5

4

Fig. 1. Design flow with LegUp [1].

step Ã, LegUp’s high-level synthesis engine is invoked to
synthesize these functions into hardware accelerators described
in Verilog code. Next, in step Ä, the C source is re-compiled
with the accelerated functions replaced by wrapper functions,
which are used to invoke hardware accelerators. Lastly, the
hybrid processor/accelerator system executes on the FPGA in
step Å.

A. Integrating Custom Verilog

Custom
Verilog
Module

I/O
ports

start

finish

arguments

return
value

memory
ports

.
.
.

.
.
.

Fig. 2. Sample of custom Verilog module interface.

In many embedded systems, accelerators need to commu-
nicate with off-chip components through I/O ports, following
certain interface protocols such as JTAG, PCIe or USB. Such
interfaces have specific cycle-by-cycle protocol specifications,
and therefore we would prefer to describe the interface be-
havior directly in a hardware description language. LegUp
provides a convenient solution to integrate custom Verilog
modules as adaptors for software functions to access standard
I/O ports. Custom modules must adhere to a specific interface
so they can be used by LegUp-generated hardware, as shown
in Fig. 2. On the left side, we show the interface to the LegUp
generated hardware, or caller module, while the right side
connects to external I/O ports that are specified in a LegUp
configuration file. The HLS-generated caller module provides
function arguments through the arguments ports that match
the function prototype in C, and then triggers the start signal
to launch the custom module. The memory ports allow the
custom module to read/write the memory at addresses usually
provided as function arguments. Upon completion, the custom
module sets the data on the return value and asserts the
finish signal to notify the caller module. Designers can also
use custom modules to stitch in hand-tuned hardware for DSP

algorithms that can be used by the LegUp auto-generated
hardware.

III. LEGUP ACCELERATORS WITH AN ARM PROCESSOR

As commercial FPGA devices have evolved, there has
been an increasing tendency to include dedicated hardware
blocks, such as memories, DSP units, and, most recently,
embedded processors. Both major FPGA vendors, Altera and
Xilinx, have seen a need to provide these processors in their
devices. For many years now, Altera and Xilinx have provided
soft processors, called Nios II and Microblaze, respectively,
which are implemented in the FPGA fabric. The performance
of these processors is limited and highly dependent on the
FPGA family being used. Recently, the FPGA vendors have
included a hard processor tightly coupled with the FPGA
fabric. Specifically, they chose a dual-core ARM Cortex-A9.
The hard ARM processor provides an order of magnitude
better performance versus soft processors [10]. To leverage the
benefits of the ARM processor, we have added the ability to
target it as an alternative to the soft-core processor previously
available in LegUp.

In the remainder of this section, we will discuss: 1) the
architecture of the hard processor system in Altera SoC
devices; 2) modifications and issues for supporting the ARM
processor within the LegUp design flow; and 3) experimental
results.

A. System Architecture
The ARM-based Hard Processor System (HPS) on Altera’s

SoC devices, as seen in Fig. 3, contains processor cores, a
memory controller and peripherals. The HPS has either one or
two ARM Cortex-A9 processors. Each processor has indepen-
dent 32-KB L1 instruction and data caches. Cache coherency
between the separate L1 caches in the two processors is
maintained by the snoop control unit (SCU). There is also
one 512-KB shared L2 cache. The L2 cache is connected
to a DDR2/DDR3 SDRAM memory controller and the L3
interconnect. The L3 interconnect enables communication with
the memory-mapped peripherals of the HPS, such as timers,
ethernet, a 64-KB RAM, etc. Also, the L3 interconnect enables
communication to and from circuits implemented in the FPGA
fabric. Circuits in the FPGA can be slaves and/or masters
attached to the L3 interconnect via the FPGA bridge. Also, the
FPGA can directly communicate with the SDRAM memory
controller.

The memory layout, as seen by the processor, is divided
into three main regions: SDRAM, FPGA slaves and the HPS
peripheral region. The lower 3 GBs of addressable space is
allocated to the SDRAM, and 960 MBs of space is allocated
for FPGA slaves. The rest is for the HPS peripherals. The
FPGA’s view is slightly different. Addresses between 2 GB
(0x80000000) and 3 GB (0xBFFFFFFF) are mapped to the
accelerator coherency port (ACP). The ACP allows FPGA
peripherals to access data in a cache-coherent manner, by
routing transfers through the SCU and L2 cache. As the ACPs
addressable space is limited, it can only access 1 GB at a time.
However, the ACP contains an address translation mechanism
to allow cache coherent access to the full addressable memory
space.

ARM Cortex-A9 MPCore

L2 Cache

CPU 0

L1 Caches L1 Caches

CPU 1

ACP SCU

SDRAM
Controller

L3
Interconnect

FPGA BridgeFPGA

HPS

Fig. 3. Altera’s Cyclone V SoC Architecture.

B. Design Flow

The design flow for using LegUp with the ARM processor
is similar to our description in Section II for using LegUp
with a soft processor. The main difference is that C programs
are now compiled to an ARM executable. Also, in step Á, we
profile the program on the ARM processor, while collecting
the same runtime statistics as we did when using the soft
processor. More specific differences between targeting the
ARM processor vs. the soft processor include accessing global
variables, using the cache and HPS specific initialization.

LegUp determines whether variables used within functions
being accelerated are local or global. Local variables are
stored in on-chip memory that is instantiated within the
hardware accelerators. Global variables are stored in memory
accessible by both the processor and the hardware accelerators.
To access global variables, the accelerators have a memory
controller, which is connected to the L3 interconnect through
the FPGA bridge. During execution, the memory controller
determines whether a data access is local or global by checking
the address. For the soft processor, the addresses between
0x00800000 and 0x00FFFFFF were allocated to be global data.
For simplicity, the same selection was made for the ARM
processor. Consequently, LegUp compiles programs to have
a starting address of 0x00800000 and we initialize the stack
pointer to 0x01000000.

The soft-core processor does not have an internal data
cache. Rather, we instantiated one in the FPGA fabric. As
the data cache was a separate component in the system, it
was trivial to connect the accelerators to the cache. To access
the cache in the Altera HPS, memory transactions from the
FPGA must go through the ACP. This requires two steps.
Firstly, all addresses used by hardware accelerators have to be
shifted up by 0x80000000. Secondly, the ACP must translate
the addresses back to the correct location. Conveniently, the
ACP’s default settings provide the correct translation.

Upon resetting the HPS, the data cache and the FPGA
bridge are disabled. To enable the data cache, the processor
must enable the MMU and set a one-to-one mapping in its
address translation table. LegUp automatically adds code to
enable both the data cache and the FPGA bridge.

C. Experimental Results
We evaluated the ARM processor design flow using the

Altera DE1-SoC [11] board, which contains a Cyclone V SoC
device. We performed experiments using a benchmark that
computes the Mandelbrot set for an image of 128×128 pixels.
Table I shows the execution time when the benchmark is run in
pure software (the SW row) on the ARM processor. The table
also contains the execution time when the main computational
function is run as a single hardware accelerator attached to the
ARM processor (1 hardware thread). In this case, the hardware
executes the Mandelbrot set approximately 11% faster than the
pure software case.

TABLE I
ACCELERATORS WITH AN ARM PROCESSOR.

Wall-clock Cycles FMax Speedup ALMs
time (ms) (MHz)

SW 28.03 - - - -
1 25.28 3084718 122 1.11× 2484 (8%)
2 15.36 1550883 101 1.83× 4439 (14%)
4 7.83 775603 99 3.58× 7992 (25%)
8 4.91 388223 79 5.70× 15959 (50%)

LegUp also has the ability to convert pthreads into multiple
accelerators, which is discussed in Section IV. Table I shows
the execution time, number of cycles and FMax for the
Mandelbrot set, when we parallelize the benchmark across 2,
4 and 8 hardware accelerators. As we add more accelerators,
the cycles required decreases linearly; however, the FMax also
decreases and hence the overall speedup does not improve
linearly. The best speedup we achieved was 5.70× with 8
accelerators.

IV. EXTRACTING PARALLELISM FROM SEQUENTIAL CODE

A key challenge in HLS is to exploit the spatial parallelism
available on the FPGA, as it is difficult to automatically extract
parallelism from sequential C code. LegUp addresses this
challenge by providing support for thread-level parallelism,
where parallel software threads are compiled to concurrent
hardware accelerators, as well as loop-level parallelism, where
loop pipelining is used to create pipelined hardware that can
execute multiple loop iterations concurrently.

A. Synthesizing Software Threads into Parallel Hardware
LegUp provides support for using Pthreads and OpenMP

for the specification of parallelism [12]. Parallelism described
in the software code is automatically synthesized into parallel
hardware accelerators that perform the corresponding compu-
tations concurrently. That is, each software thread is mapped
automatically into a hardware accelerator. The remaining (se-
quential) portions of the program are executed in software on
the processor. The processor invokes accelerators and retrieves
their return values by using wrapper functions, which replace
the original software versions of the parallel code. Wrapper
functions perform memory-mapped writes/reads over the on-
chip bus to send function arguments to the parallel acceler-
ators, start the accelerators, poll to check if they are done,
then retrieve any return values. Writing deterministic parallel
software often requires the use of synchronization constructs

TABLE II
SUPPORTED PTHREADS FUNCTIONS/OPENMP PRAGMAS.

Pthreads Functions Description
pthread create(..) Invoke thread
pthread join(..) Wait for thread to finish
pthread exit(..) Exit from thread, can be used to return data

pthread mutex lock(..) Lock mutex
pthread mutex unlock(..) Unlock mutex

pthread barrier init(..) Initialize barrier
pthread barrier wait(..) Synchronize on barrier object

OpenMP Pragmas Description
omp parallel Parallel section

omp parallel for Parallel for loop
omp master Parallel section executed by master thread only
omp critical Critical section
omp atomic Atomic section

reduction(operation: var) Reduce a var with operation
OpenMP Functions Description

omp get num threads() Get number of threads
omp get thread num() Get thread ID

that, for example, manage which threads may execute a given
code segment at any given moment. Recognizing this, we also
provide HLS support for two key thread synchronization con-
structs in the Pthreads/OpenMP library: mutexes and barriers.

Table II shows a list of Pthreads and OpenMP library func-
tions which are currently supported in our framework. Note
that all of the original calls to OpenMP/Pthreads functions
are automatically replaced with corresponding functions in
our framework, requiring no manual code changes by the
user. Meaning that, the input C program with calls to the
Pthreads/OpenMP API can be compiled to a hybrid proces-
sor/accelerator system as is.

We also allow nested parallelism – threads forking threads.
Consider the case of there being multiple functions executed
in parallel with Pthreads – a first level of parallelism. These
functions could have one or more loops, some of which could
be parallelized with OpenMP – a second level of parallelism.
Currently, we only permit up to two levels of parallelism for
automated hardware synthesis, with Pthreads being the first
level and OpenMP being the second.

To evaluate the performance of our parallel accelerators,
we used 7 different parallel benchmarks, Black-Scholes,
MCML [13], Mandelbrot, Line of Sight, Division, Hash, and
Dfsin [14]. Each benchmark was executed in 4 different
scenarios: 1) a baseline case where all accelerators operate
sequentially; 2) a single level of parallel accelerators using
Pthreads; 3) Pthreads combined with loop pipelining, where
each Pthread accelerator contains a loop pipelined hardware,
and 4) Pthreads combined with OpenMP – nested paral-
lelism. For scenario #4 (Pthreads combined with OpenMP),
we experiment with various numbers of Pthreads and OpenMP
internal accelerators, for a total of 8 different configurations.
The largest configuration has 30 Pthreads with 4 OpenMP
internal accelerators, which means that there are essentially
a total of 120 accelerators. Note that all 120 accelerators are
not necessarily identical, as the 4 OpenMP accelerators only
parallelize the loop inside a Pthread function, and there can be
other operations done outside the loop. We label architecture
configurations as follows: S denotes the sequential baseline
case, 4L1 denotes the 4 first-level Pthread accelerators archi-
tecture, 4L1-P denotes the 4 first-level Pthread accelerators

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

S 4L1 4L1-P 4L1-2L2 4L1-3L2 4L1-4L2 8L1-4L2 12L1-4L2 16L1-4L2 20L1-4L2 30L1-4L2

Sp
ee

d
u

p

Architecture

All

Division/Mandelbrot/Hash

Division/Mandelbrot/Line of Sight

Division/Line of Sight

Line of Sight

Fig. 4. Geomean speedup ratios.

with loop pipelining, and nL1-mL2 denotes the architecture
with n first-level Pthread accelerators with m second-level
OpenMP accelerators.

Fig. 4 shows the geometric mean speedup (in wall-clock
time) of the different architectures normalized to the baseline
case. Since we could not use all the parallelization configura-
tions for all benchmarks, multiple lines are plotted, with each
line showing the geomean speedup for a subset of circuits in
which the particular configuration could be used1. The legend
shows which benchmarks are included for each line on the
graph. The geometric mean across all benchmarks (first line
of the legend) shows that the best speedup of 7.6× is observed
with the 4L1-4L2 architecture. The 4L1-P configuration is
not included in this case, since loop pipelining could not be
applied in all benchmarks.

For the benchmarks where loop pipelining could be used
(Division/Mandelbrot/Hash), 4L1-P shows 6.17× speedup
over baseline, and 4L1-4L2 still shows the best result with
7.51× speedup. However, there are cases where loop pipelin-
ing can perform far better. For instance, for the Division
benchmark, 4L1-P outperformed all other architectures, even
the 20L1-4L2 architecture which has 80 accelerators. This is
because a 32-bit division takes 32 cycles in LegUp, using
Altera’s divider core pipelined to achieve the highest-possible
FMax. Since the divider itself is pipelined, it can accept a
new input every clock cycle, which is very well suited to loop
pipelining. With 4 Pthread accelerators, each of which has only
one hardware instance of the loop body, this 4L1-P architecture
showed 12.5× speedup over the baseline architecture for
the Division benchmark. The biggest speedup in Fig. 4 is
12.9× with the 12L1-4L2 architecture for three benchmarks.
Mandelbrot shows the largest single benchmark speedup with
17.2× with the 12L1-4L2 architecture, and 16.6× with the
8L1-4L2 architecture. Overall, as the number of accelerators
is increased excessively, the geomean speedups decrease due
to reductions in FMax and diminishing returns in clock cycle
reduction.

B. Loop Pipelining

In many C applications, the majority of runtime is spent
executing critical loops. The high-level synthesis scheduling
technique called loop pipelining, exploits parallelism across

1If we had used a single line, each data point would represent the average
for potentially different sets of circuits.

loop iterations to generate hardware pipelines. Loop pipelining
increases parallelism and hardware utilization, creating circuits
similar to hand-coded hardware architectures. The most com-
mon loop pipelining framework used in high-level synthesis
is called modulo scheduling. Modulo scheduling rearranges
the operations from one iteration of the loop into a schedule
that can be repeated at a fixed interval without violating any
data dependencies or resource constraints. This fixed interval
between starting successive iterations of the loop is called the
Initiation Interval (II) of the loop pipeline. The best pipeline
performance and hardware utilization is achieved with an II of
one, meaning that successive iterations of the loop begin every
cycle, analogous to a MIPS processor pipeline. Consequently,
minimizing the initiation interval can significantly improve
pipeline performance.

State-of-the-art HLS scheduling uses a mathematical frame-
work called a system of difference constraints (SDC) to
describe constraints related to scheduling [15]. The SDC
framework is flexible and allows a wide range of constraints
such as data and control dependencies, relative timing con-
straints for I/O protocols, and clock period constraints. Al-
though loop pipelining has been well studied in HLS, until
recently, the SDC approach had not been applied to scheduling
loop pipelines due to non-linearities caused by describing
the resource constraints in modulo scheduling. Recent work
in [16] has extended the SDC framework to handle loop
pipelining scheduling by using step-wise legalization to handle
resource constraints. This new SDC approach offers com-
pelling advantages over prior methods of modulo scheduling
by providing the same mathematical framework for a wide
range scheduling constraints. However, the work in [16] uses
a greedy approach, where operations are scheduled using a
priority function designed to minimize the impact on opera-
tions still to be scheduled. Once an operation is scheduled, this
decision is final, and if the greedy scheduling is unsuccessful
at a given II, then [16] increases the II and tries again. There
are issues applying this greedy approach to more complex
loops, particularly the class of loops that contain a combination
of recurrences and resource constraints. A greedy modulo
scheduling algorithm will not achieve an optimal schedule with
the minimum possible initiation schedule if we schedule an
operation to a particular time step that later turns out to be
wrong. Therefore, greedy scheduling is highly dependent on
the chosen priority ordering function.

We have implemented a new backtracking SDC modulo
scheduling approach [17] to improve the suboptimal greedy so-
lutions. When the modulo scheduling stops forward progress,
we unschedule one of the previously scheduled operations and
backtrack, eventually finding the optimal minimum initiation
interval. We performed an empirical study on a set of bench-
marks containing loop pipelines constrained by resources and
limited by recurrences. We compared the new backtracking
modulo scheduler to prior work [16] with our results summa-
rized in Fig. 5(a). We also compared our scheduler to a state-
of-the-art commercial HLS tool in Fig. 5(b). Our approach
achieves a 31% improvement in geomean wall-clock time
vs. prior work and a 27% improvement vs. a commercial
HLS tool. Our wall-clock time improvement is a result of the
lower pipeline initiation interval achieved by our backtracking

(a) LegUp versus Prior Work [16]

(b) LegUp versus Commercial HLS Tool

Fig. 5. Backtracking SDC modulo scheduling experimental results.

SDC modulo scheduler when compared to greedy modulo
scheduling.

C. Loop Transformations for Loop Pipelining

We also investigated performing loop transformations to
further improve loop pipelining performance, specifically for
the nested loops. The total cycle latency (Ltotal) of a nested
loop with only the innermost loop being pipelined is:

Ltotal = [II× (N−1) + Ldepth]×T (1)

where N is the trip count of the pipelined innermost loop,
hence the term II× (N − 1) is the cycle latency to start all
the inner loop iterations. Ldepth is the pipeline depth, which is
equivalent to the cycle latency of one innermost loop iteration.
Ldepth also corresponds to the cycle overhead to flush out
the pipeline in the last iteration. Lastly, T is the number
of times the innermost loop executes, which is the product
of trip counts of all outer loops. Loop transformations can
vary the parameters in the above equation and have a large
impact on the overall cycle latency. Currently, we focus on four
major transformation techniques. Their utility and application
scenarios are explained below, followed by some preliminary
results.

Loop interchange is a loop transformation that reorders the
execution of loop iterations by swapping an outer loop with
an inner loop. Consider a loop nest with depth of 2. Loop
interchange can swap the trip counts of the outer loop (T) and
the inner loop (N). If T is greater than N, and other variables
in the equation are not affected by loop interchange, the total
cycle overhead to flush out the pipeline can be reduced by
(T −N)× (Ldepth− II) cycles.

Loop interchange can also affect II by varying the depen-
dence distance carried by the pipelined loop. For instance, both
loops in the example code below carry a dependency between
iterations; the outer and inner loops carry dependencies with
distances of 4 and 1, respectively.

for i=4:N
for j=4:N

a[i][j] = a[i-4][j] + a[i][j-1];

The minimum recurrence II is equal to d Recurrence Length
Dependence Distancee,

where the Recurrence Length is the length (in clock cycles) of
a cross-iteration path in the control-dataflow graph, from the
node (operation) where a value is computed to the node where
it is consumed, and the lengths of individual operations are
their minimum latency in clock cycles. Assume the recurrence
length to be 4 cycles in the above example. When the inner
loop is pipelined, the recurrence II is 4 since the inner
loop dependence distance is 1. However, if the loops are
interchanged, the inner loop dependence distance will become
4 and the recurrence II can be reduced to 1. Moreover, the
minimum recurrence II of 1 cycle can be achieved if the inner
loop does not carry a dependency. Meaning that, if the outer
loop carries no dependency, but the inner loop does and results
in a recurrence II greater than 1, loop interchange can be
applied to eliminate the dependency carried by the inner loop
and hence achieve the minimum recurrence II.

Loop skewing is primarily used in conjunction with loop
interchange to eliminate an inner loop dependency [18]. Typ-
ically, after the transformation, the outer loop trip count is
elongated so that the dependency carried by the inner loop
can be removed.

Loop distribution (also called loop fission) transforms a
loop nest into multiple separated nests. This transformation
is useful to create more perfect loop nests and hence more
pipeline opportunities. For instance, in the left example below,
the statement s cannot be pipelined since it is not inside the
innermost loop. With loop distribution, the original loop nest
is split into two perfect loop nests where all operations can be
pipelined.

for i=1:N {
s: b[i][j] = i+j;

for j=1:N
a[i][j] = i*j;

}

ñ

for i=1:N
s: b[i][j] = i+j;

for i=1:N
for j=1:N

a[i][j] = i*j;

Loop fusion performs the inverse transformation of loop
distribution. This transformation is particularly useful in com-
bining perfect loop nests that have the exact same loop bounds.
With fewer independent loop nests and more instructions in
the merged loop, the hardware throughput can be improved as
more instruction-level parallelism is achieved.

TABLE III
TRANSFORMATIONS APPLIED AND SPEED-UP ACHIEVED.

Transformations Cycle Latency [×103]

Benchmark Applied Original Optimized Speed-up
reg detect distribution 2,710 1,166 2.32×

gemver interchange, fusion 3,007 1,257 2.39×
adi interchange 10,432 4,135 2.52×

seidel-2d skew, interchange 7,179 831 8.64×

To demonstrate the potential of improving loop pipeline

Fig. 6. Pattern A (left) and Pattern B (right).

performance using these transformations, we manually apply
the transformations on four kernels that are selected from the
PolyBench/C 3.2 benchmark suite [19], and we evaluate the
cycle latency through ModelSim simulation. In the experiment,
all of the innermost loops are always pipelined. Table III
lists the transformations applied in each kernel and compares
the cycle latency before and after the transformations. The
cycle latency speed-up achieved in each kernel ranges from
2.32× to 8.64×. These loop transformations do not require
extra resource usage and they do not reduce the circuit clock
frequency. Our next step will be to develop a method for
determining the best transformations to apply based on the
input program and then automate the optimization flow as part
of the LegUp synthesis flow.

D. Control-Flow Graph Modifications

We also implemented an approach to improve the speed
of HLS-produced hardware by transformations in the control-
flow graph (CFG) of the program. The basic idea is to identify
patterns within the CFG and selectively merge the basic
blocks associated with these patterns into a single “mega”
basic block, similar to hyperblocks using if-conversion [20].
Currently, we look for the patterns of basic blocks shown
in Fig. 6, which we refer to as Pattern A and Pattern B.
By collapsing such patterns into mega blocks, instructions
that were originally scheduled after branch(s) may be able
to execute earlier and in parallel with other instructions,
thereby increasing instruction-level parallelism and improving
performance. For example, with Pattern A, instructions in
block A2 may be able to execute in parallel with instructions in
block A1 after collapsing. We apply the collapsing judiciously
by first profiling the application in software to determine the
number of times each block is executed under a typical input
dataset, then scheduling the program with and without the
collapsing, and ultimately, determining conclusively whether
or not collapsing a given pattern instance is profitable to cycle
latency. Note that we expect such collapsing to be detrimental
to power consumption, as computations within intermediate
basic blocks will always execute, instead of executing only
for a certain branch outcome.

Regarding the implementation, to ensure functional correct-
ness, we reject patterns for which the intermediate blocks, i.e.
block A2 of Pattern A, and blocks B2, B3 of Pattern B, contain
call instructions, as function calls may result in undesired
modifications of memory. However, store instructions are
permitted and are handled by predication. This is achieved by
selecting to store to either a valid or an invalid null address
based on the branch condition (which is nevertheless computed

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

d
fa
d
d

d
fd
iv

d
fm

u
l

d
fs
in

gs
m

jp
eg

d
h
ry
st
o
n
e

C
lo

ck
 C

yc
le

 S
p

e
e

d
U

p

Clock Cycle SpeedUp of Benchmarks

Fig. 7. Cycle latency speedup for benchmarks exhibiting valid merge patterns.

in the mega block, but not used to control a branch). phi
instructions in tail blocks A3 and B4 are replaced by select
instructions in the mega block.

To evaluate the performance of the modified hardware we
used the CHStone suite of HLS benchmarks, as well as 4 other
local LegUp test cases. Fig. 7 plots the clock cycle speedup
for benchmarks which contained valid merge patterns, i.e.
benchmarks which contained at least one merged basic block
pattern in the final IR used for Verilog generation. For the gsm
benchmark, over 10% improvement is observed, with more
modest improvements seen for the other circuits. Future work
will broaden the approach to larger and more complex patterns
of basic blocks based on their dominance relationships.

V. RAISING HLS HARDWARE QUALITY

In this section, we highlight work underway to improve the
quality of hardware produced by HLS.

A. Memory Synthesis

Memory presents challenges in high-level synthesis when
using C as the user specification language. C targets a von-
Neumann-style computing architecture, which can lead to
memory bottlenecks in highly parallel algorithms. However,
in HLS we can generate a custom memory architecture for
our particular target application depending on the memory
locality and program access patterns. In many cases, we cannot
determine the exact memory locations that each C pointer
could access at compile time. This is called the pointer aliasing
problem. Most commercial HLS tools avoid handling pointer
aliasing and instead limit the program input to simple arrays
whose accesses can be determined statically. LegUp does not
have this limitation on program input. Therefore, for memories
where the accesses cannot be resolved, we must allocate them
into a global memory, where we can dynamically resolve each
pointer address to a place in memory at run-time.

The initial version of LegUp allocated all arrays specified
in the C program into a global shared memory. Each C array
is stored in a separate FPGA on-chip block RAM, with a
width that matches the data stored in the array. Each BRAM
is identified by a 9-bit tag. All memory accesses in the circuit
are fed into a shared memory controller, which steers the
access to the correct RAM depending on the tag bits. There
are a few limitations to this approach. First, the memory
controller output contains a wide multiplexer, which grows

linearly with the number of memory allocations in the C code.
This multiplexer affects FMax, and forced LegUp to use a
memory latency of two cycles. The second issue relates to the
program call stack. Each C function corresponds to a Verilog
module in the final LegUp-synthesized hardware. Functions
lower in the call stack of the program are instantiated deeper in
the module hierarchy of the circuit. At each level of hierarchy,
we create a multiplexer to steer the memory signals, which can
affect FMax for programs with a deep call graph.

We mitigate these problems by using local memories. We
partition the memory space into global memory, which allows
us to dynamically resolve pointer aliasing at runtime, and
local memory, when we can statically determine the memory
being accessed. In the case of the hybrid flow we have a
third memory form: memory allocated by the processor and
accessed through the processor cache. We partition all arrays
into either local or global memory. Local memory is used for
C arrays that are only used in one function. In this case, we
instantiate a local BRAM within the module corresponding to
that C function. This also works for all constant arrays – which
can be duplicated inside all functions that access the constant.

Local memory can shrink the number of multiplexers in the
design by avoiding accesses to the shared memory controller.
Local memories can also be accessed in parallel without being
limited by the two ports on the shared memory controller.
We do not support local memory in some cases. If the user
allocates an array and then passes a pointer to that array
to another function, we mark the array as global memory.
Another case is pointer indirection, where the pointer to an
array is stored inside another array. In this case, we also mark
the array which has been referenced as a global memory. We
have found that the shared memory controller is typically on
the critical path, so local memories improve FMax.

Another problem with LegUp’s existing approach is poor
utilization of Stratix IV M9K memory blocks in the shared
memory controller. We found that an Altera synchronous on-
chip RAM with only a few words will be synthesized to use
an entire M9K block on the FPGA, or effectively 9Kb of
memory. To mitigate this issue, we group arrays by word
width and instantiate them into one large block RAM. We
found a significant M9K savings by packing many memories
into the same M9K using this grouped memories approach.
Furthermore, using local RAMs in isolation also improves
M9K usage because Quartus is able to optimize the smaller
RAMs away (implementing them in LUT RAM).

Grouped RAMs requires an offset for each array to find
the array’s location in the larger block RAM. An address
now consists of: Tag + Offset + Index. However, this offset
can cause additional addition operations in the final hardware
compared to the previous Tag + Index approach. We handled
this by padding the block RAM and making the offset divisible
by the number of words in each array. By doing this, we
can calculate the address using simple concatenation of Tag,
Offset, and Index. This saves area (fewer adders) and improves
FMax at the cost of memory bits. However, these memory bits
are typically wasted anyway by under-utilized M9Ks in the
original LegUp implementation.

We studied the impact of memory partitioning using the
CHStone benchmarks [14]. The CHStone benchmarks include

golden input and output test vectors, allowing us to synthesize
the circuits with a built-in self-test. We used these test vectors
to simulate the circuits in ModelSim and verify correctness.
We targeted the Stratix IV [21] FPGA (EP4SGX530KH40C2)
on Altera’s DE4 board [22] using Quartus II 11.1SP2 to
obtain area and FMax metrics. Quartus timing constraints
were configured to optimize for the highest achievable clock
frequency. We considered four scenarios for comparison: 1) the
default LegUp flow (Orig); 2) grouping RAMs in the global
memory controller (Group); 3) partitioning memory into local
RAMs and global RAMs (Local); and, 4) combining both
RAM grouping in the global memory controller and memory
partitioning (Both).

Table IV gives speed performance results for these four
scenarios. The “Cycles” column is the total number of cy-
cles required to complete the benchmark. The “FMax” col-
umn provides the FMax of the circuit given by the Quar-
tus. The “Time” column gives the circuit wall-clock time:
Cycles · (1/FMax). Ratios in the table compare the geometric
mean (geomean) of the column to the respective geomean in
the default LegUp flow. The geomean FMax was improved
by 11% by combining local RAMs with grouping, due to a
smaller multiplexer required in the shared global memory con-
troller. Partitioning memory into local RAMs hardly improved
the geomean cycles indicating that the schedule of these
benchmarks was not constrained by the global shared memory
ports. Overall geomean wall-clock time performance was
improved by 10% by combining local RAMs with grouping
RAMs in the memory controller, with a portion of the overall
improvement coming from the local RAMs and a portion from
the grouping.

Detailed area results could not be included for space
limitations; however, we found a significant improvement in
the effective memory bits required during synthesis, which
decreased by 29% by grouping RAMs. When we combined
local RAMs with grouping, we found that the reduction was
67%. By combining local RAMs with grouping we found
geomean ALUTs decreased by 18% and geomean registers
decreased by 12%. This was due to less multiplexing in the
shared memory controller and also registers being packed into
the local block RAMs.

B. Multi-Cycling
Significant clock frequency speedups have also been

achieved in the LegUp-generated datapath through the use
of multi-cycle paths. A multi-cycle path is a register-to-
register path of combinational logic which is allowed multiple
clock cycles to “complete” (i.e. a transition along the path
is permitted to propagate for more than one clock cycle).
Such paths occur frequently in LegUp circuits when an in-
struction completes more than one cycle before the result of
its computation is consumed – we refer to such a path as
having multi-cycle slack. A naturally occurring multi-cycle
path is illustrated in Fig. 8, in which the multiplication E*F,
not required until clock cycle 3, is allowed two cycles to
complete. Analysis of the LegUp schedule is automatically
performed to identify all instances of multi-cycle slack and
print constraints for Altera’s Quartus II Timing Analyzer so
the timing analyzer “knows” the path is permitted extra cycles.

+

–

&
*

– Cycle 1

Cycle 2

Cycle 3

 A B C D E F

Cycle slack
of 2

Fig. 8. Illustration of a multi-cycle path.

We calculate these cycle delays by traversing all register-
to-register paths post-scheduling, including paths scheduled
across basic block boundaries.

In addition to this static timing analysis to discover multi-
cycle paths, LegUp also performs datapath de-pipelining to
create additional multi-cycle opportunities. In general, hard-
ware generated by LegUp is pipelined and able to process new
data each clock cycle, including loops, dividers and floating
point operations. However, the level of instruction-level paral-
lelism inferred from the C source does not always permit an
initiation interval of one for these pipelines. While circuits can
accept new data each clock cycle, this is rarely observed in C
benchmarks, which describe algorithms sequentially and are
more often translated into hardware where only one or a few
hardware units are active at a time. Because such datapaths do
not always benefit from pipeline parallelism, an alternative is
to fully de-pipeline datapaths and instead, designate them as
multi-cycle paths (of equivalent latency).

Multi-cycle paths have many benefits compared to fully
pipelined paths. Eliminating registers both saves area and
removes a portion of register-to-register delay: clock-to-Q
delay, setup time, clock skew. De-pipelining also allows
synthesis tools to optimize logic across register boundaries.
Note also that registers in FPGAs reside in specific pre-
defined locations on the die and there is consequently a
delay “cost” (albeit small) associated with physically routing
a path to a register location – multi-cycle paths do not carry
this restriction. Moreover, de-pipelining datapaths allows the
delays of computations along the path to be averaged such that
no one computation is critical.

Multi-cycle constraints target solely datapaths, so not all
circuits show speedups (some circuits may have critical paths
that do not reside in the datapath). Nevertheless, while multi-
cycle work is ongoing in LegUp, 4 of the 12 CHStone
benchmarks already show a reduction in total execution time
of 10% or greater, with dfmul improving by 16% and dfdiv
by 25%. The greatest speedups are due to cycle slack analysis
across basic blocks, in which paths are identified that may
complete in more cycles than Quartus was able to infer.

A number of additional optimizations are also under devel-
opment. For example, multi-cycle paths currently slow down
the clock frequency of gsm by 3×. In this circuit, numerous
multi-cycle paths share the same source and destination reg-
isters, but pass through different basic blocks and therefore
have unbalanced latencies. LegUp prints a single multi-cycle
slack constraint for all register-to-register pairs, and in the
case of multiple paths between two registers, LegUp must
select the shortest latency of all paths to prevent timing
violations. This makes the high-latency paths between these

TABLE IV
MEMORY ARCHITECTURE PERFORMANCE RESULTS

Cycles FMax (MHz) Time (µs)
Benchmark Orig Group Local Both Orig Group Local Both Orig Group Local Both
chstone/adpcm 27026 27026 26104 26104 159 135 132 153 170.0 200.2 197.8 170.6
chstone/aes 9452 9452 9372 9372 125 139 139 156 75.6 68.0 67.4 60.1
chstone/blowfish 186428 186428 186428 186428 163 175 180 189 1143.7 1065.3 1035.7 986.4
chstone/dfadd 746 746 746 746 240 234 249 249 3.1 3.2 3.0 3.0
chstone/dfdiv 1956 1956 1956 1956 232 241 215 215 8.4 8.1 9.1 9.1
chstone/dfmul 272 272 272 272 255 246 254 254 1.1 1.1 1.1 1.1
chstone/dfsin 59132 59132 59132 59132 162 154 147 147 365.0 384.0 402.3 402.3
chstone/gsm 5908 5908 5906 5906 175 181 204 204 33.8 32.6 29.0 29.0
chstone/jpeg 1252416 1252416 1232666 1232666 101 106 101 114 12400.2 11815.2 12204.6 10812.9
chstone/mips 6228 6228 6228 6228 231 251 264 264 27.0 24.8 23.6 23.6
chstone/motion 8420 8420 8420 8420 233 229 224 249 36.1 36.8 37.6 33.8
chstone/sha 258042 258042 256500 256500 192 197 221 246 1344.0 1309.9 1160.6 1042.7
dhrystone 7760 7760 7760 7760 173 220 218 266 44.9 35.3 35.6 29.2
Geomean 14097 14097 14026 14026 181.7 186.7 189 201 78 75 74 70
Ratio 1 1 0.99 0.99 1 1.03 1.04 1.11 1 0.97 0.96 0.90

two registers critical in the overall circuit. To solve this, LegUp
sets -through constraints on these paths, specifying different
multi-cycle slacks depending on intermediate signals in a path.
A challenge however is that synthesis tools may optimize away
these intermediate signals, and while directives can be added to
preserve intermediate wires, this introduces additional delays
and increases circuit area. One current enhancement therefore
is selecting a minimal set of intermediate signals to preserve,
while still ensuring that each path can be uniquely constrained,
thereby trading some additional delay for more precise slack
allocation.

VI. INSPECT: LEGUP’S DEBUGGING PLATFORM

If HLS is to be useable by software engineers, new de-
bugging and visualization methodologies are needed. LegUp’s
debugging framework, called Inspect [23], aims to provide a
gdb-like experience for HLS hardware, offering features such
as C code stepping, break points, and variable watching.

Through a GUI, the user is able to step through the C code
and inspect the values of variables. However, unlike a software
debugger which executes the program on a processor, in this
case, the run-time program data is extracted from a hardware
execution of the circuit. There are two modes of operation:
1) simulation mode, where signal values are extracted from
a ModelSim simulation; and 2) silicon debug mode, where
signal values are extracted from an actual HW execution on
an FPGA by using Altera’s SignalTap II logic analyizer [24].
Simulation mode is useful for debugging small and medium
sized applications and it provides full visibility into the design
as all signals can be examined. The silicon debug mode is use-
ful for analyzing timing-related bugs, transient runtime errors
(SEUs), bugs in the interface and so on that are “invisible” at
the RTL level. However, not all variables (hardware signals)
can be inspected in this mode because of pin, memory and
interconnect limitations on the FPGA.

To relate the software to the hardware, Inspect uses a debug
database, which we create automatically during HLS. The
database, implemented in MySQL [25], contains the links
between the program, its internal representation within LLVM,
and finally, the hardware. For a given C variable, the database
allows us to find the corresponding HW signal. Likewise, for

a given C statement, we can find the FSM states where the
statement’s computations occur.

Fig. 9 shows the Inspect GUI. At the top left, buttons allow
the user to step and run/continue the program/HW. There
are two styles of stepped execution available: statement step
and cycle step. Statement step advances the execution by one
C statement, which may take multiple clock cycles in the
hardware. Cycle step advances the execution by a single clock
cycle. Observe the left-most panel of the GUI containing the
line numbers. The user may click on a line number to set
a breakpoint at the corresponding line. Continuing right, the
next panel shows the C code, with the currently executing line
highlighted. The next panel shows the corresponding LLVM
IR. The panel below shows the corresponding Verilog code
being executed, in this case, a compare operation arising from
the inner-most loop of the C. The right-most panels show the
HW signals active in the current scope, and, at the bottom, the
variable values, as extracted from the HW. At the top-right of
the GUI, the current FSM state is displayed.

VII. COMPARISON AGAINST LEGUP 3.0

We compared the quality of results provided by the current
LegUp tool, with that provided by the 3.0 release (early
2013). We use the CHStone HLS benchmark suite [14], and
the dhrystone integer benchmark, and we target the Altera
Stratix IV FPGA. A difficult-to-meet timing constraint was
applied for all runs. Note that while the CHStone benchmarks
are commonly used in HLS research, they generally do not
have opportunities for loop pipelining, and as such, the loop
optimizations described in previous sections were not applied.

Table V shows the results. Column 1 gives the name of
each benchmark. The next four columns give the wall-clock
time, cycles, FMax (in MHz), and the number of Stratix IV
ALMs for LegUp 3.0, respectively. The right-most column of
the table gives the the ALMs for the current LegUp. The third
last row presents geometric mean data for LegUp 3.0; the
second last row provides geometric mean data for the current
LegUp; the last row presents the ratio of the geometric mean
vs. LegUp 3.0. On all metrics, we see significant quality-of-
results improvements vs. the prior release. On average, wall-
clock time is improved by 27%, cycle count by 13%, FMax

Fig. 9. GUI for Inspect debugger.

TABLE V
QUALITY-OF-RESULTS COMPARISON WITH LEGUP 3.0.

LegUp 3.0 Current

Benchmark Time Cycles FMax ALMs ALMs
adpcm 221 24106 109 6951 5201

aes 69 9891 144 7701 7353
blowfish 1066 179561 168 4966 4228

dfadd 3 775 235 3240 1910
dfdiv 8 1970 235 6138 3967

dfmul 22 3067 141 8588 1186
dfsin 471 59765 127 11470 11355
gsm 36 5367 150 4886 4097
jpeg 13077 1237646 95 17633 13799
mips 23 5475 236 1499 1201

motion 27 6363 237 1906 1772
sha 1383 257532 186 6650 4898

dhrystone 37 6813 186 2986 2261
Geomean (3.0) 96.2 16095 165.9 5291

Geomean(curr)2 69.8 14026 201.5 3671
Ratio: 0.73 0.87 1.21 0.69

by 21%, and area by 31%.

VIII. CONCLUSIONS

LegUp is an open-source high-level synthesis tool be-
ing developed at the University of Toronto that allows a
C program to be automatically converted to hardware, or
alternately, to a hybrid system with a processor and accel-
erators. The tool remains under active development, with
current thrusts being: 1) adding support for ARM proces-
sors, 2) increasing hardware parallelism, 3) hardware qual-
ity improvements, and 4) visualization and debugging. Visit
http://legup.eecg.toronto.edu to learn more and down-
load LegUp.

REFERENCES

[1] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson, “LegUp: An open-source high-level
synthesis tool for FPGA-based processor/accelerator systems,” ACM
Trans. Embed. Comput. Syst., vol. 13, no. 2, 2013.

2See “Both” columns of Table IV for Time, Cycles, and FMax

[2] J. Cong and Y. Zou, “FPGA-based hardware acceleration of lithographic
aerial image simulation,” ACM Trans. Reconfigurable Technol. Syst.,
vol. 2, no. 3, Sep. 2009.

[3] P. G. Paulin and J. P. Knight, “Force-directed scheduling in automatic
data path synthesis,” in IEEE/ACM DAC, 1987, pp. 195–202.

[4] Altera SDK for OpenCL, Altera, Corp., 2014.
[5] Vivado High-Level Synthesis, Xilinx, Inc., 2014.
[6] Cyclone V SoC hard processor system, Altera, Corp., 2014.
[7] LLVM Compiler Project (http://www.llvm.org), 2010.
[8] The Tiger ”MIPS” processor., University of Cambridge,

http://www.cl.cam.ac.uk/teaching/0910/ECAD+Arch/mips.html, 2010.
[9] M. Aldham, J. Anderson, S. Brown, and A. Canis, “Low-cost hardware

profiling of run-time and energy in FPGA embedded processors,” in
IEEE ASAP, 2011, pp. 61–68.

[10] Altera, “Processor selector,” http://www.altera.com/devices/processor/
selector/proc-processor-selector.jsp, 2014.

[11] Altera DE1-SoC Board, Altera, Corp., 2014.
[12] J. Choi, J. Anderson, and S. Brown, “From software threads to parallel

hardware in FPGA high-level synthesis,” in IEEE International Confer-
ence on Field-Programmable Technology, 2013, pp. 270–279.

[13] Monte Carlo Simulations., Oregon Medical Laser Center,
http://omlc.ogi.edu/, 2007.

[14] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Proposal and
quantitative analysis of the CHStone benchmark program suite for
practical C-based high-level synthesis,” Jour. of Information Processing,
vol. 17, pp. 242 – 254, 2009.

[15] J. Cong and Z. Zhang, “An efficient and versatile scheduling algorithm
based on SDC formulation,” in IEEE/ACM DAC, 2006, pp. 433–438.

[16] Z. Zhang and B. Liu, “SDC-based modulo scheduling for pipeline
synthesis,” in ICCAD, San Jose, CA, 2013.

[17] A. Canis, S. Brown, and J. Anderson, “Modulo SDC scheduling with
recurrence minimization in high-level synthesis,” in Int’l Conf. on FPL,
2014.

[18] D. F. Bacon, S. L. Graham, and O. J. Sharp, “Compiler transformations
for high-performance computing,” ACM Comput. Surv., vol. 26, no. 4,
pp. 345–420, Dec. 1994.

[19] L.-N. Pouchet and U. Bondugula, PolyBench/C - the Polyhedral Bench-
mark Suite, December 2012.

[20] S. A. Mahlke, D. C. Lin, and e. Chen, “Effective compiler support for
predicated execution using the hyperblock,” in ACM SIGMICRO, vol. 23,
no. 1-2. IEEE Computer Society Press, 1992, pp. 45–54.

[21] Stratix-IV Data Sheet, Altera, Corp., 2010.
[22] DE4 Dev. and Education Board, Altera, Corp., 2010.
[23] N. Calagar, J. Anderson, and S. Brown, “Source-level debugging for

FPGA high-level synthesis,” in Int’l Conf. on FPL, 2014.
[24] SignalTap II Logic Analyzer User Guide, Altera, Corp., San Jose, CA,

2013.
[25] MySQL Open Source Database, http://www.mysql.com, 2014.

