
Synthesizable-from-C Embedded
Processor Based on MIPS-ISA and OISC

Tanvir Ahmed†, Noriaki Sakamoto†, Jason Anderson‡, and Yuko Hara-Azumi†,∗
†Dept. of Communications and Computer Engineering, Tokyo Institute of Technology

‡Dept. of Electrical and Computer Engineering, University of Toronto
∗JST, PRESTO

†{tanvira|noriakis|hara}@cad.ce.titech.ac.jp, ‡janders@ece.utoronto.ca

Abstract—We describe a lightweight open-source MIPS-ISA
processor, wherein performance and area can be flexibly traded-
off with one another. The processor contains an ultra-low-
cost co-processor capable of executing programs comprised of
SUBLEQ instructions (subtract and branch if the difference
is ≤ 0), which recent work has shown to be sufficient for
any computation. Area/performance trade-offs are realized by
implementing a user-selectable subset of MIPS instructions with
functionally equivalent SUBLEQ sub-routines that run on the co-
processor. Silicon area is reduced as more MIPS instructions
are implemented with the co-processor, rather than “natively”
using functional units within the host MIPS. The processor
is described in the C language and synthesized to an FPGA
hardware implementation with high-level synthesis (HLS). Since
it is specified at a high level of abstraction, it is straightforward
to tailor to any application. As such, the processor can be viewed
as a family of processors with different area/performance/power
characteristics. In an experimental study, we compare a variety of
processor variants, wherein different subsets of MIPS instructions
are handled by the co-processor. We also compare the proposed
synthesizable processor with a hand-designed 5-pipeline-stage
MIPS implementation, and achieve area reductions ranging from
2.5–4×.

Keywords—Coprocessors, Field programmable gate arrays, Em-
bedded Processor

I. INTRODUCTION
Recent trends in computing have seen explosive growth in

the low-cost/low-power embedded context, where lightweight
processors are ubiquitous in varied applications, such as wear-
able, sensor, automotive, and home appliance. In this domain,
processor cost and power are often the key drivers. However,
the amount of performance one is willing to sacrifice for
a reduction in cost/power is highly application dependent.
What is needed is a flexible processor, wherein cost (silicon
area) can be traded-off with performance in a straightforward
way, while at the same time supporting a standard instruction
set architecture (ISA) targetable with mainstream compiler
technology. In this paper, we propose an open-source MIPS-
ISA processor with a unique architecture that permits such
performance/cost trade-offs. Our processor is described in the
C language and synthesizable with a state-of-the-art high-level
synthesis (HLS) tool [1].

At the extreme end of the low-cost computing spectrum
is the one instruction-set computer (OISC), comprising an
ISA with a single instruction, thereby eliminating the need
for an opcode. A recent example of this is the SUBLEQ-based
OISC machine [2]: it supports a single ternary instruction with
arguments, a, b, and c. The instruction behavior is as follows:
the value at address a is subtracted from the value at address
b and the result is stored in address b. If the difference is ≤
0, control transfers to address c. An OISC with SUBLEQ is
proven to be Turing complete — it is capable of performing
any computation.

We propose a novel processor architecture that supports
the MIPS ISA and contains within an OISC SUBLEQ co-
processor. The implementation of each MIPS arithmetic/logical
instruction can be designated as: 1) native, or 2) low-cost.
Instructions designated as native are implemented in the tradi-
tional way, with functional units inside the MIPS. Instructions
designed as low-cost are implemented using the SUBLEQ co-
processor. Specifically, when such instructions are decoded, a
sub-routine comprising a SUBLEQ program is invoked on the
co-processor, performing the equivalent functionality as the
low-cost-designated MIPS instruction. Our focus here is on
SUBLEQ-based implementations for those MIPS instructions
that are costly to implement in silicon, e.g., left and right shift
(arithmetic and logical), and multiplication. In essence, our
processor can be viewed as a family of processors, wherein
the user pre-selects MIPS instructions as native or low-cost,
thereby permitting easy performance/cost trade-offs.

A key aspect of our processor is its specification in
C software written in a style that, when input to the
LegUp open-source high-level synthesis tool from the
University of Toronto, produces an optimized FPGA
hardware implementation. The source code makes heavy
use of predication to flatten the control-flow graph,
simplifying the hardware’s finite state machine (FSM)
and reducing the number of cycles per instruction. Bitmasking
is used in the C to hint the HLS and back-end RTL
synthesis tools to shrink datapath widths. The processor’s
implementation is completely open source and available at:
https://github.com/Hara-Laboratory/Hirundo.
By specifying the processor at a high-level of abstraction in
software, debugging and maintainability are improved, and
it is straightforward to tailor to any application. We believe
the embedded computing community will benefit from an
open-source MIPS-ISA processor optimized for an HLS
framework.

The contributions of this paper are:

• A MIPS-ISA processor enabling easy
performance/cost trade-offs by way of it incorporating
a SUBLEQ co-processor and associated sub-routines
that permit execution of MIPS instructions.

• An open-source C specification of the processor that is
intended/optimized for use with a state-of-the-art HLS
tool.

• A complete gcc-based toolchain for targeting the
proposed processor that produces a single hybrid
MIPS/SUBLEQ binary.

• An experimental study comparing the area, cost and
power consumption of FPGA implementations of a
wide-variety of processor variants with an existing
MIPS implementation described in Verilog RTL [3].

The remainder of this paper is organized as follows: Sec-

2015 IEEE 13th International Conference on Embedded and Ubiquitous Computing

978-1-4673-8299-1/15 $31.00 © 2015 IEEE

DOI 10.1109/EUC.2015.23

114

tion II presents relevant background material and describes
related work. The proposed architecture and its functional-
ity is introduced in Section III. Section IV describes how
MIPS instructions are translated into SUBLEQ subroutines.
Section V describes our experiences with the HLS tool and
details how we had to massage the C to get an optimized
hardware implementation. The experimental study is described
in Section VI. Conclusions and suggestions for future work
appear in Section VII.

II. BACKGROUND AND RELATED WORK
A. High-Level Synthesis

High-level synthesis refers to the automated synthesis of
a hardware circuit from an untimed (clockless) software pro-
gram. HLS is gaining traction recently as a design methodol-
ogy for FPGAs, which can be used as configurable computing
platforms to achieve higher throughput and energy efficiency
than standard processors. In certain applications, recent work
has demonstrated that the quality of circuit (area and per-
formance) produced by HLS is close to that achieved with
human-crafted hardware [4]. HLS is particularly attractive
for applications where the specification/requirements change
frequently, or in scenarios where there is demand for a variety
of unique variants of a given circuit, each suited to particular
application needs. It is the latter which motivated our use of
HLS in this work: for the synthesis of a variety of processor
variants with different area/speed trade-offs. In such cases, it
is desirable to keep the functional specification in software
where it can be easily modified, rather than in RTL, which is
time-intensive and error prone to change. In this work, we use
the LegUp open-source HLS tool which targets Altera FPGAs,
and is built within the LLVM compiler framework [5].

B. Application-Specific Processors
Several commercial tools are available to generate custom

processors (e.g., Xtensa [6]). With such tools, the user is
able to generate a processor architecture customized to their
application needs, as well as a compiler for the generated ar-
chitecture. Thus, using such customized architectures requires
that applications be re-compiled into the processor’s specific
(and proprietary) ISA, and necessitates that application source
code be accessible.

Different application-specific processors [7], [8], [9] have
been proposed based on such commercial tools. [8] describes
a “trimmed” VLIW design methodology. The authors first
created a baseline VLIW processor architecture by automat-
ically deciding upon the various architectural components
(e.g., number of registers, read/write ports, functional units,
etc.) using a design space exploration algorithm based on ant
colony optimization. Then, the base processor was optimized
(“trimmed”) by simulating a suite of application(s) on the fully
programmable architecture and determining the unneeded com-
ponents (such as unused interconnects, registers, multiplexers,
and so on), which were then removed from the architecture.
[7] presented a solution for constructing a processor core for
a given application in C. As with the previous work, this used
a baseline processor generated and optimized by commercial
tools, and then the design was optimized for a set of applica-
tions. [9] similarly examined the area/performance benefits of
tailoring an FPGA-based MIPS processor implementation for
specific applications. The major limitation of such application-
specific processors is that by tailoring them for a specific set
of applications, they are no longer able to execute applications
outside of those for which they were optimized. In our work,

we overcome this limitation — our processor, while tailored for
an application, is able to execute the full MIPS ISA.

C. Small-Scale Computers
Small computers with shrunken datapath widths have been

proposed in prior work [10], [11], [12]. [10] presents an 8-
bit processor, which emulates 32-bit ARM applications using
its own instruction set that was designed to achieve a bal-
ance between area and performance. A similar approach was
presented in [11] for FPGAs, comprising a 16-bit pipelined
accumulator architecture with no register file. An extremely
small version of these approaches was presented in [12], which
implements the MIPS ISA and adopts a 2-bit serial data-path
for its execution units. In order to perform 32-bit operations,
each 32-bit operand is divided into sixteen 2-bit operands, and
these operands are serially fed into the 2-bit wide execution
units. In general, the weakness of such prior works is that they
require many clock cycles to execute a single instruction; for
example, [12] requires 23 cycles, on average, for each MIPS
instruction.

Recently, one instruction set computers (OISC) have been
proposed in [13], [14], [2] for applications with restrictive
power/cost constraints. [13] describes an architecture that can
natively process encrypted data in a cloud computing service,
without ever sharing cryptography keys with a host machine.
A SUBNEG-based OISC architecture has also been realized
in post-silicon technology using carbon nanotubes [14]. A
SUBLEQ co-processor was used in [2] to detect and recover
from permanent faults in a host processor. While the co-
processor could be re-purposed to create an application-specific
processor with low area/power (as is done here), key differen-
tiating features of our work are the area consumed by the host
processor and the ease with which customization is achieved.
[2] employs a hand-coded 5-stage pipelined host processor
that consumes significant silicon area and requires low-level
hardware design expertise to tailor to an application. In our
work, on the other hand, the processor and co-processor are
specified in C and can be tailored by anyone with software
skills. Also, as will be demonstrated in the experimental study,
our processor has a small area footprint, making it suitable
for embedded applications. Lastly, we note that prior work
on OISC architectures relied mainly on hand-coded applica-
tions — a significant impediment to the adoption of OISC is
the lack of a compiler toolchain. In this work, we utilize a
SUBLEQ co-processor in executing standard MIPS binaries.

III. PROCESSOR ARCHITECTURE AND OPERATION
In this section, we describe the proposed processor architec-

ture and operation, and highlight some optimization techniques
to improve its area and performance.

A. Usage Model
We envision the processor would be used as follows: 1)

The user first compiles their application(s) and uses profiling
to determine the instruction composition. 2) Based on the
profiling results and the desired performance/area target, the
user designates instructions to implement natively on the host
processor (e.g., using a standard ALU) or with the low-cost
SUBLEQ co-processor. In general, silicon area is reduced as
a greater proportion of instructions are realized with the co-
processor vs. on the host processor. Designating instructions
as native/low-cost is straightforward, by changing a single C
header file (to be discussed below). 3) The user compiles
the processor using HLS to produce an RTL specification,
synthesizable by existing back-end RTL synthesis tools.

115

!"#$

!"#$%&'"()##"'%

%&$

'()*+(,$

-.$/.$0$ 11.22 &*
34
,*
5$

*+,-./%0"1&'"()##"'%

%&$

&*
34
,*
5$

#$

647,4$

'*3($

2)3"'4%

8++,(99$
'747"8++,(99$

'747":394;$
8++,(99$

Fig. 1: Proposed processor architecture.

<=>!"#$$"%&$

?#&@#$

?%'#'$

(#')*$

+&,$-".&$

/01234$+5AB6&($

/01234$7&859C$

D@DDDD$

D@DD=D$

D@DDEF$

D@DGDD$

D@<DDD$

HE:$$

Fig. 2: Memory map of proposed architecture.

B. Architecture
Fig. 1 shows a block diagram of the processor connected to

a memory. The figure illustrates the processor’s internal func-
tional blocks, comprising the expected logical, arithmetic, con-
trol and decoder blocks, along with a SUBLEQ co-processor.
The co-processor is used to emulate MIPS instructions in
the absence of a dedicated hardware resource. For example,
in the absence of a hardware multiplier, the processor, on
encountering a MIPS multiply (mult) instruction, invokes a
sub-routine on the SUBLEQ co-processor that emulates the
behavior of the mult.

The processor uses a common memory for instructions
and data (von Neumann architecture) and, as a means for
saving area, has no register file. Rather, the registers typically
associated with the MIPS architecture reside in main memory.
Fig. 2 shows the memory layout. Starting from address 0x0,
the lowest 32 locations of memory (i.e., 0x0–0x1F) are used
as a register file. The next two sets of memory locations are
used for the SUBLEQ co-processor: the first set is used as
scratch pad memory (described below); the next set holds
the SUBLEQ sub-routines for emulating MIPS instructions.
There is one sub-routine for each MIPS instruction. The rest
of the memory is used for storing the program and data
segments of the MIPS program. Note that we use a word-
addressable memory to reduce the required number of memory
accesses/ports. In a byte-addressable memory, one needs either
to make multiple reads to access 32 bits (4 bytes) of data (takes
multiple cycles), or alternately, one needs multiple memory
ports that can be accessed concurrently. While we use the
standard MIPS gcc compiler toolchain, we implemented a
post-assembler script to convert the byte-addressable binary
into a word-addressable binary. In this study, we use a 16KW
(64KB) memory; however, any size of memory can be used.

C. Operation
The execution flow of the processor is shown in Fig. 3.

First, an instruction is fetched from memory. The instruction is
decoded, its type is ascertained and its operands are retrieved.

!56756%"#8#$9:;%
result=((add_cnt)?res_add:0x0)

 |((sub_cnt)?res_sub:0x0)|…
%&%<%'((<%"#8#$9:;%

mem_loc=((reg_wb)?rd:0x0)
 |((mem_wb)?mem_add:0x0)|…

)0%"#8#$9:;%
pc=((j_inst)?j_address:pc)

)0%*7+,6#%
pc = pc + 1

-#6$.%/;=6>5$9:;%
inst=MEM[pc]

(#$:+#%/;=6>5$9:;%
SRC1=MEM[ints[21:25]]
SRC2=MEM[inst[16:20]]

gen_control(inst)

&?#$56#%0'1/2&%%/)"%
res_add=SRC1+((add_cnt)?SRC2:imm)
res_sub=SRC1-((sub_cnt)?SRC2:imm)

SUBLEQ%
0:@)>:$#==:>%

!"#$%"#&$'())*#+$+*$
&,&-(+&$./'+#(-0*/1$

2&'$

3*$

Fig. 3: Instruction execution flow of the processor.

If the instruction is to be implemented on the co-processor
(see the decision block in Fig. 3), the base address of the sub-
routine for the particular instruction type (which is hard-coded
in the host processor) is passed to the co-processor and the
instruction’s operands are written to special memory locations
(discussed below) so they can be accessed by the co-processor.
Then, control passes to the co-processor, which is launched
at the sub-routine address. The host processor waits until it
receives a signal from the co-processor that the instruction has
completed and the host processor can retrieve the results.

On the other hand, if the instruction is to be implemented
on the host processor (natively), its execution proceeds in
a traditional way using functional blocks within the host
processor itself. Fig. 3 shows two representative examples
for native execution on the host processor, namely, addition
and subtraction. Following execution on either the host or
co-processor, the appropriate result is selected from the co-
processor or a relevant ALU. Likewise, the memory address at
which to store the result is determined, as well as the next PC
value, which may be the subsequent address or an address
arising from a jump/branch. Observe that in the proposed
processor, the host processor’s program counter (PC) is always
pointing to MIPS code; the co-processor’s separate PC only
points to SUBLEQ code.

IV. SUBLEQ CO-PROCESSOR
In this section, we describe how the host processor com-

municates with the co-processor, and also give some examples
of SUBLEQ sub-routines that perform equivalent functionality
to MIPS instructions. In general, MIPS instructions may have
up to two source operands and produce a single computed
result. Consequently, when the host processor decodes an
instruction whose type is to be executed on the co-processor,
it must “pass” the instruction operands to the co-processor and
then retrieve the co-processor’s result when the instruction has
completed. This is done through specially designated mem-
ory locations which are pre-defined in advance. Specifically,
the host processor moves instruction operands into specific

116

TABLE I: Memory information of SUBLEQ co-processor.
Memory locations Purpose of memory
SRC1, SRC2 Source operands
DEST Destination location
HI, LO Special memory locations for multiplication
T0-T6 Scratchpad temporary mem locations
Z Constant 0
INC, DEC Constants (−1), (+1)
CW Constant 32

memory locations whose addresses are hard-coded in SUBLEQ
sub-routines. Similarly, SUBLEQ sub-routines place results
into a specific location, which is hard-coded into the host
processor. In essence, the pre-defined memory locations serve
as a communication “bridge” between the host processor and
the co-processor.

Besides the locations for operands and results, SUBLEQ
sub-routines need access to a small scratchpad memory to store
intermediate computed results, and we have found that 7 mem-
ory locations are sufficient for this purpose. In addition, we
found that SUBLEQ sub-routines could be made more concise
if several constant values were easily accessible, specifically,
zero, (+1) and (−1) and 32. (+1) and (−1) are used by sub-
routines to ease decrement and increment; 32 is the word width
and is used by sub-routines that must walk through each bit
of an operand (e.g., sub-routine for multiplication). We store
these useful constants in 4 memory locations. Finally, the
multiplication sub-routine required two additional locations to
store the high- and low-order words of the computed 64-bit
product. Such locations are also used by the host processor to
handle multiply, even when the SUBLEQ processor is absent.
Table I summarizes the special memory locations used by the
SUBLEQ processor, and for communication between the host
and co-processor.

Techniques for programming a SUBLEQ-based OISC ar-
chitecture and some sub-routines for multiplication, division,
and so on, have been presented in [15]. In the following,
for the sake of brevity and owing to space limitations, we
give two representative examples of SUBLEQ sub-routines for
MIPS instructions. One is unsigned add (corresponds to MIPS
instructions addu, addiu) and the other is for logical shift
left (corresponds to the MIPS instruction sll). These two
subroutines use some of the memory locations described in
Table I.

We extended Mazonka’s notation [15] for writing SUBLEQ
sub-routines. By definition, an OISC architecture has solely
one instruction type; consequently, we can omit specifying
an opcode in SUBLEQ assembly. We use a semicolon and a
newline to mark the end of each instruction. Operands are
delimited by whitespace. A typical SUBLEQ sub-routine looks
as follows:

@subroutine1 DEST, SRC1, SRC2
A B L; // ∗B← ∗B− ∗A
B DEST; // ∗DEST← ∗DEST − ∗B
L:Z Z End; // ∗Z← ∗Z− ∗Z (i.e., ∗Z← 0)

where * implies a pointer dereference. The first line
is the header of the sub-routine. Each sub-routine has
a header formatted like “@⟨subroutine name⟩ ⟨argument1⟩,
⟨argument2⟩, . . .” and the arguments are fixed to “DEST,
SRC1, SRC2” in the proposed architecture. Comments from
“//” to end-of-line in each line are ignored. The first instruc-
tion in the sub-routine is interpreted as follows: 1) subtract
the value in location A from the value in location B and
store the result in location B; and 2) jump to location L if

@addu DEST, SRC1, SRC2
// this subroutine does ∗DEST← ∗SRC2 + ∗SRC1
L1: SRC1 Z L2; // ∗Z← ∗Z− ∗SRC1
L2: SRC2 Z L3; // ∗Z← ∗Z− ∗SRC2
L3: DEST DEST L4; // ∗DEST← 0
L4: Z DEST L5; // ∗DEST← ∗DEST − ∗Z
L5: Z Z End; // ∗Z← 0, and quit

Fig. 4: SUBLEQ routine for unsigned addition.

the computed value is non-positive, otherwise, proceed to the
next instruction. When there are only two operands in one
instruction, as in the second instruction, the implicit third
operand is the address of the following instruction. In the third
instruction, the address where first operand is stored is labeled
as L. The third line is an example of a widely used idiom to
clear the value at a memory address: “Z Z (...);”. Formally, the
parsing rules for sub-routines expressed in Extended Backus–
Naur Form (EBNF) [16] are as follows:

subroutine ⇐ header { instruction } ;

header ⇐ ’@’ ident [ident { ’,’ ident }] ;
instruction ⇐ operand operand [operand] ’;’ ;

operand⇐ { ident ’:’ } expr ;
expr ⇐ number | ident ;

a) Example 1: addu rd, rs, rt Fig. 4 shows
the SUBLEQ sub-routine that implements unsigned addition.
The behavior of this MIPS instruction is to add two operands
together (those in registers rs and rt) and write the result
back to a destination register (rd). Prior to invoking the sub-
routine, the host processor deposits the operands at locations
SRC1 and SRC2. In the example, the first SUBLEQ instruction
negates *SRC1 and stores it to memory location Z. The second
instruction adds *SRC2 with *Z. The DEST location is shared
by other sub-routines, and there exists the possibility of it
containing a non-zero value. Thus, it is important to clear
the location before storing the result, as is done in the third
instruction. The fourth instruction updates the value at DEST.
Finally, in the last instruction, the Z memory location is cleared
for later use by other sub-routines and the SUBLEQ processor
hands control back to the host processor (a constant End PC
location is used to indicate sub-routine termination). The host
processor retrieves the result from the DEST location.

b) Example 2: sll rd, rs, sa Fig. 5 shows
the SUBLEQ subroutine for logical left shift. The semantics of
this MIPS instruction is to left-shift the value in register rs
by an amount sa and deposit the result into the register rd.
This example is more complicated than the previous one, as
the SUBLEQ sub-routine uses more temporary locations than
the previous example, and it contains a loop. The sub-routine
repeatedly adds the value of rs to itself sa-times. As with
the previous example, the operand and shift amount are stored
into memory locations SRC1 and SRC2, respectively. For
additional clarity, we also illustrate the sub-routine behavior
in C:

*T2 = -(*SRC1); // L1
*DEST = -(*T2); // L2 to L3
*T1 = -(*SRC2); // L4
for ((*T1)++; *T1 <= 0; (*T1)++) { // L5

*DEST -= *T2; // L8
*T2 = -(*DEST); // L9 to L10

}
*T1 = *T2 = 0; // L6 to L7

Temporary registers (e.g., T1 and T2) are initially cleared
to zero. The sub-routine contains four chunks: 1) initialization,
2) counter update and loop condition, 3) loop body, and 4) the

117

@sll DEST, SRC1, SRC2
 L1: Init: SRC1 T2;
 L2: DEST DEST;
 L3: T2 DEST;
 L4: SRC2 T1;
 L5: Loop: INC T1 LBody;
 L6: LFinish: T2 T2;
 L7: T1 T1 End;
 L8: LBody: T2 DEST;
 L9: T2 T2;
L10: DEST T2;
L11: Z Z Loop;

T1 ! 0

DEST SRC1; T1 –SRC2

T1 T1 + 1

Clear
T1 and T2

Rd 2 * RdEnd

Start

Y

N

← ←

←

←

Init:

Loop:

LFinish:

LBody:

Fig. 5: Implemantation in SUBLEQ of instruction “sll rd,
rs, sa”, which is equivalent to rd = rs << sa.

ending. 1) The first three instructions (L1–L3) copy the value
from location SRC1 to DEST using the temporary location
T2. *T2 equals (−*DEST) after executing these instructions.
The instruction on L4 deposits the negated shift amount
into location T1. 2) We combine updating the counter *T1
and checking the loop condition into one instruction at L5.
The instruction “INC T1 Lbody;” increments the counter
*T1 by one and jumps to the loop body if the counter is
non-positive. Note that the counter has been initialized with
a negative value (−sa); therefore, the loop body will be
executed sa times. 3) The loop body relies on an invariant
that (*T2) = −(*DEST). The instruction at L8 subtracts *T2
from *DEST. This instruction therefore doubles the value in
DEST (i.e., left shift) because of the loop invariant. The ninth
instruction clears location T2, and the tenth instruction moves
(−*DEST) into T2, maintaining the loop invariant. The last
instruction in the loop body clears location Z; this subtraction
has no effect, and its result is always zero, causing a jump to
L5. 4) Finally, all the used temporary registers are cleared to
zero by sixth and seventh instructions before returning control
to the host processor.

Available SUBLEQ Sub-routines
Despite that the SUBLEQ OISC architecture is Turing

complete and therefore able to perform any computation [2],
in some cases, the SUBLEQ equivalents of certain MIPS
instructions are not performance efficient, requiring a large
number of SUBLEQ operations. Thus, in this paper, we pro-
vide knobs that permit a subset of MIPS instructions to be
designated for the co-processor: those MIPS instructions that
require significant area to realize in the host processor’s ALU
(and would provide a significant area reduction if eliminated),
and/or those instructions that require relatively few SUBLEQ
instructions to emulate on the co-processor. The following
classes of instructions can be implemented with SUBLEQ
subroutines:

• Multiplication: both multiplication (i.e., mult, and
multu) and move operations related to multiplication
(i.e., mflo, mfhi, mtlo, and mthi) are replaced
with SUBLEQ sub-routines.

• Subtraction: both sub, and subu of the MIPS ISA
are replaced with SUBLEQ sub-routines.

• Shift: all three shift operations of MIPS ISA (i.e.,
sll, sllv, srl, srlv, sra, and srav) are
replaced with three SUBLEQ routines which are
shift-left-logical, shift-right-logical, and shift-right-
arithmetic.

• Set-less-than: set-less-than is commonly used for
processing the control flow of the program. Four
instructions slt, slti, sltu, and sltiu are
replaced with SUBLEQ sub-routines.

• Addition: all MIPS instructions which use the adder
unit of the host processor such as, add, addu,
addi, and addiu.

When one of the above instruction classes is designated to
run on the co-processor, the necessary hardware to realize that
class in the host processor is eliminated, thereby reducing the
area of the host processor.

A configuration file is used to generate different variants
of the processor, which manages the hardware resources of
the host processor and also generates control for the co-
processor during HLS. With 5 classes of instructions that can
be implemented on the host or co-processor, the user is able to
generate 25 = 32 unique processors, by way of minor changes
to the configuration file.

V. C SPECIFICATION FOR HLS
In this section, we highlight a few features of our C

implementation that we found to be necessary to produce
optimized hardware. A key weakness of modern HLS tools is
the notion of syntactic variance: the circuit generated by HLS
depends significantly on the style of the input program and
also the constraints provided to the HLS tool. Recent work
has shown that a specific coding style may be necessary to
produce good-quality results [17].

Our implementation has an outer while loop that contin-
ues to execute until the program terminates. Each iteration of
the loop fetches and executes a single MIPS instruction.

A. Executing an Instruction
We declare a Boolean variable for each instruction type and

initialize the variable to true if the variable corresponds to
the current instruction being executed.

...
1: bool R_TYPE = (opcode == 0x00);
2: bool ADDU_COND = (R_TYPE & (funct == 0x21));
3: bool OR_COND = (R_TYPE & (funct == 0x25));

...
4: bool BNE_COND = (opcode == 0x05);

...

Line 1 above checks if the instruction is a register-type
instruction. Lines 2 and 3 show the variable declarations for
unsigned addition (addu) and bitwise OR (or) — these query
the funct 6-bit field in register-type MIPS instructions. Line 4
shows the variable declaration for branch-if-not-equal (bne).

At a high level, MIPS instructions take one or more of
the following three actions: 1) perform a logical/arithmetic
operation on two register operands, or a register and an
immediate value, and then deposit the result to a register; 2)
perform a write to memory; or 3) jump/branch to a location
(possibly conditional). Our initial C implementation made
heavy use of conditionals (if-else) to perform only the
work needed for the particular instruction being executed.
While it produced functionally correct results, this coding
style produced a complicated control-flow graph (CFG), and
a correspondingly complicated FSM in the HLS-generated
hardware. Moreover, we originally had many locations in our
implementation where we read/wrote from/to memory. For
example, we had separate locations in our source code for
memory writes for sw (store word) and sb (store byte). This

118

approach, however, produced large multiplexers on the RAM
inputs in the hardware implementation, bloating area.

We found that superior HLS results were produced by the
following approach for the various actions an instruction may
take.

1) Arithmetic/Logical: We compute all possible arith-
metic/logical results irregardless of the type of the current
instruction. We then select the specific relevant result for the
current instruction, ignoring all other computed results. A
representative code snippet is as follows:

...
1: unsigned int RES_AND = SRC1 & LOGIC_IMM_INP;
2: unsigned int RES_OR = SRC1 | LOGIC_IMM_INP;
3: int RES_SUBU = SRC1 - SRC2;

...
4: RESULT = ((AND_COND) ? RES_AND : 0x0) //AND

| ((OR_COND) ? RES_OR : 0x0) //OR
| ((SUB_COND) ? RES_SUBU : 0x0) //SUBU
| ...

...

Lines 1–3 above perform the computations for logical AND,
OR and unsigned subtraction. In lines 1 and 2, the logical
operation is performed between a source register SRC1 and
an immediate operand LOGIC_IMM_INP. Line 4 selects a
particular pre-computed result, based on the opcode of the
current instruction. Note in line 4 the use of logical OR: a
single ternary (<> ? <> : <>) operator condition evaluates
to true and the particular result is OR’ed with zeroes (the
evaluated result of all-but-one of the ternary operators).

2) Writing Back to Memory: We similarly compute all pos-
sible write-back address locations and then select the correct
location for the current instruction. If the current instruction
does not perform a memory write, we default to a dummy
unused write-back address. An example code snippet:

...
1: bool WB_RD = (SLL_COND | AND_COND | ...
2: bool WB_RT = (SLTI_COND | SLTIU_COND | ...

...
3: WB_LOC = ((WB_RD)? rd : 0x0)

| ((WB_RT)? rt : 0x0)
| ...

...

Lines 1–2 set Boolean variables according to whether a write
will occur to the register specified in the RD or RT fields of
the instruction word — this depends on the type of instruction
being executed. Line 3 selects the actual write-back address.

3) Jump/Branch: We likewise compute all possible
jump/branch locations and relevant branching conditions, and
as above, we then select the correct destination/condition for
the current instruction. If the current instruction is not a jump
or branch, the destination will be the program counter.

To be sure, the above approach performs redundant work
for each instruction, however, with this approach, the control-
flow graph for the code to execute an instruction consists of a
single basic block — straight-line code with no branches. This
simplified the FSM of the HLS-generated HW.

B. SUBLEQ Co-Processor
The co-processor is specified in 10 lines of C code:

1: while (PC != End) {
2: unsigned short a = get_value (PC);
3: unsigned short b = get_value (PC + 0x1);
4: unsigned short c = get_value (PC + 0x2);

5: signed int src1 = get_value (a);
6: signed int src2 = get_value (b);
7: src2 = src2 - src1;

8: write_value (src2, b);
9: PC = 0x3FF & ((src2 > 0) ? PC + 0x3 : c);

10: }

where the outer while loop continues to execute a sub-routine
until a sentinel program counter (PC) value is reached (End),
and get_value/write_value are memory read/write. The
SUBLEQ routines for MIPS instructions are located in the
lower part of the address space (below address End). Lines 2–
4 retrieve the operands, a, b and c from memory. Lines 5–6
dereference pointers a and b. The subtract and store occur in
lines 7 and 8, respectively. The new PC is computed in line 9.
Masking with 0x3FF (10 bits) in line 9 reduced the datapath
width for the addition and select in the generated hardware.

Regarding the bitmasking in line 9 of the code example
above, by zeroing all but the lower bits of a computed value,
the HLS and back-end RTL synthesis tools are able to infer that
all high-order bits are logic-0 and therefore generate no hard-
ware to produce such bits. While we cannot apply bitmasking
on register-data calculations (these must be 32-bits), we did
apply such bitmasking throughout our C implementation on
addressing-related computations and computations involving
immediate values (these are 16-bits wide in the MIPS ISA).

VI. EXPERIMENTAL STUDY
In this section, we present the experimental evaluation

of our proposed processor. First, the experimental setup is
described and then experimental results are discussed for the
following metrics: 1) area, 2) power, 3) wall-clock time, and
4) area-delay product. We report power (as opposed to energy)
owing to its importance in embedded/IoT scenarios, where
devices are supplied by sources with limited peak power, such
solar (e.g. [18]) or the EM environment.

A. Experimental Setup
The experimental setup and toolchain is shown in Fig. 6,

leveraging in-house, open-source, and commercial tools. Fig. 6
shows that an in-house assembler 1 (written in Haskell) is
used to generate SUBLEQ sub-routine libraries, which are later
linked by elf2mem 4 with the MIPS binary generated by
GCC-4.1.1 3 . We evaluate processor variants using 12 bench-
mark programs collected from the SNU real-time [19] and
CHStone [20] benchmark suites. Benchmarks were compiled
with -O2 optimization. SUBLEQ sub-routines were verified
by an in-house SUBLEQ sub-routine verifier 2 . The generated
test vectors (the combined MIPS/SUBLEQ binary executable),
the C description of the processor and the configuration
file designating which instruction types are native/low-cost
(config.h) are provided as inputs to the LegUp HLS tool 5 ,
generating RTL code for the processor.

The processor’s RTL is simulated using ModelSim 6 to
verify functional correctness and gather the total number of
execution cycles required to execute each benchmark applica-
tion. The RTL is also synthesized, placed and routed in Altera’s
90 nm Cyclone II [21] FPGA using Quartus II ver. 11.1 7 ,
allowing us to extract area and clock frequency (fmax) from
the post-routing implementation 8 . Combining the fmax with
the cycle count data allows us to compute wall-clock time for
each benchmark: (# of cycles) × 1/fmax. Altera tools were
used to generate a post-routing gate-level structural netlist and
delay file (.sdf) enabling us to execute a full-delay gate-level
simulation with ModelSim 9 , producing a switching-activity
(.vcd) file. The activity data and routed design were input to

119

Fig. 6: Experimental setup for the evaluation.

Altera’s power analyzer10 , yielding a power estimate reflecting
post-routed delays and interconnect capacitances.

We consider five different processor variants:
1) HOST ONLY: All instruction classes execute on

the host; there is no SUBLEQ co-processor. For
this processor, we synthesized it in two ways: 1)
using the hardened ASIC-like multiplier blocks on
the Cyclone II, and 2) without using the hardened
multipliers by directing the Altera RTL synthesis
tools to implement multipliers using the FPGA’s soft
logic: look-up-tables (LUTs). We include the soft
logic multiplier implementation because some low-
cost/low-power FPGAs for embedded applications
(e.g., [22]) do not contain hardened multipliers.

2) M-SUBLEQ: Only multiplication instructions run on
the SUBLEQ co-processor.

3) MS+-SUBLEQ: Multiplication, shift, subtraction, and
set-less-than instructions run on the SUBLEQ co-
processor.

4) ALL-SUBLEQ: All the instructions discussed in Sec-
tion IV are run on the SUBLEQ co-processor, and the
few instructions remaining are executed on the host
processor.

5) TIGER: As a point of comparison, we also include
results for the TIGER MIPS processor from the Uni-
versity of Cambridge [3]. TIGER is a hand-designed
Verilog RTL implementation of a MIPS processor
with a 5-stage pipeline and separate instruction and
data caches (9KB each). With respect to comparing
results between TIGER and our processors, the reader
should bear in mind that, as opposed to TIGER,
our processor is automatically synthesized from C
(making it straightforward to modify) and is intended
for low-cost/low-power scenarios where performance
can be sacrificed to some extent. As with #1 above,
we synthesized TIGER two ways: with and without
using the hardened multipliers on Cyclone II.

B. Experimental Results
1) Profiling the MIPS Instruction Mix: We executed each

benchmark in a cycle-accurate MIPS simulator to profile the
dynamic instruction mix. Such profiling data is valuable for
interpreting the results later in this section, and for selecting
instruction classes to execute on the SUBLEQ co-processor
for a given benchmark. In general, instruction types that
execute infrequently are potentially good candidates to move
to the co-processor, trimming area from the host processor
with moderate performance consequences. Profiling results are
shown in Fig. 7, where instruction types are partitioned into
6 categories. Starting at the bottom of each bar (multiplier),

!!

"!!

"!!

#!!

$!!

#!!!

%!
"#
$
!

%&
!

%'
!

%(
%%
)*
!

#+
#!

,%
#%
))!

-'
$
!

./
&$

$
!

.'0
+&
!

1&!
#2
/&
!

$
"*
-!

'*
#%
!!

!

$
*%
/!

!!
"#
!#
$!%
&'

()
*+

"#
&'
!,-

.!

3()2").*+!4$()&5$605!$7.5!(8! 9(%&+%#&0+!4'(%5!'(%(8!

9:.;*+!4'))5!'))'5!'+)5!'+)'5!'+%5!'+%'8! 9*&)<*'')=:%/!4')&5')&(5')25')2(8!

!!+!4%!!5!%!!(5!%!!.5!%!!.(8! >&:*+'!4)0-.#5!)0%!5!'&0+*5!%+%/#:5!(8!

Fig. 7: MIPS instruction mix profile.

observe that only 4 benchmarks require multiplication (which
includes the following six MIPS instructions mult, multu,
mflo, mfhi, mtlo, and mthi). Across all benchmarks,
3.6% of instructions, on average, reside in this category. Shift
instructions comprise 10.7% of all instructions executed, on
average. Subtract and set-less-than instructions represent 1.9%
and 3% of all executed instructions, respectively. The lion’s
share of all instructions lie in the adder and “other” category.
Over 35% of instructions, on average, require addition. The
“other” category includes the logical operations (logical and,
or, nor, and xor), loads/stores, and control-flow instructions
(branch/jump).

2) Area and fmax: Area and fmax results for all proces-
sor variants are given in Table II. We report the number of
Cyclone II logic elements (LEs), each of which comprises a
4-input LUT/flip-flop pair, as well as the number of multiplier
blocks (9× 9 hardened multipliers). fmax results reflect post-
routing delays. The columns of the table correspond to the
processor variants mentioned above. Note that there are two
columns for the HOST ONLY and TIGER processors for the
implementations with and without using the hard multipliers,
respectively. The TIGER distribution from the University of
Cambridge is a complete system that operates on Altera’s
Cyclone II-based DE2 board, with on-chip cache backed by
on-board SDRAM memory, integrated debugging and other
surrounding logic. To create a more apples-to-apples compari-
son between TIGER and the proposed processors, the reported
area/power/performance results reflect solely the processors,
and do not include the logic in other parts of the system. Also,
since the benchmark programs did not require division, neither
our processors nor TIGER include divider units1.

The first row of Table II shows the number of Cyclone II

1We modified TIGER’s Verilog RTL to remove the divider units.

120

TABLE II: Synthesized area and frequency.
HOST ONLY w/ SUBLEQ Co-Processor TIGER

Hard Mult. Soft Mult. M-SUBLEQ MS+-SUBLEQ ALL-SUBLEQ Hard Mult. Soft Mult.
LEs 1821 2185 1600 1232 1141 4232 5709
Ratio 1.00 1.19 0.88 0.68 0.63 2.32 3.13
Ratio 0.83 1.00 0.73 0.56 0.52 1.94 2.61
of Multipliers 6 0 0 0 0 8 0
Frequency (MHz) 150.7 149.2 154.6 169.9 176.8 89.9 87.9
Ratio 1.00 0.99 1.02 1.13 1.17 0.60 0.58
Ratio 1.01 1.00 1.03 1.14 1.18 0.60 0.59

LEs. The two subsequent rows show the ratios of LE usage
relative to the HOST ONLY processor with and without the
hard multipliers, respectively. Columns 4–6 contain results for
processors with the SUBLEQ co-processor. Observe that as
successively more instruction classes are handled by the co-
processor, significant area reductions are achieved. Relative to
the HOST ONLY processor with hardened multipliers, a 37%
drop in LE usage is realized in the ALL-SUBLEQ scenario.
When soft LE-based multipliers are used, a nearly 2× reduc-
tion in area is seen for the ALL-SUBLEQ processor vs. HOST
ONLY. The ALL-SUBLEQ processor requires just over 1000
LEs. Row 4 of the table shows the hardened multiplier usage. It
is worth reinforcing that, since our processor is described in C
and synthesized with HLS, all variants, which exhibit the wide
range of areas shown in Table II, were realized by software
changes alone.

The two right-most columns of the table give the results
for TIGER, which requires ∼2–3× more LEs than the HOST
ONLY processor, depending on the style of multiplier imple-
mentation. In comparison with the ALL-SUBLEQ processor,
TIGER requires ∼4–5× more LEs (cf. the ALL-SUBLEQ
column and the two right-most columns of the table). We
believe that, owing to its low resource requirements, our
processor will be useful in area-constrained scenarios requiring
a processor that can execute a standard MIPS binary produced
via a standard toolchain.

The last rows of Table II pertain to fmax, and follow an
analogous format to the LE rows of the table. Observe that
as more instruction classes are migrated to the co-processor,
fmax increases by up to ∼17–18% as the host processor’s
datapath and control hardware is reduced. TIGER operates at
a significantly lower fmax than the proposed processor: ∼40%
lower than HOST ONLY. TIGER’s low fmax is a conequence
of its considerably more complicated architecture, control and
data-forwarding structures.

3) Power Consumption: Table III gives power consumption
results for two benchmarks, gsm and isort (insertion sort)2.
We selected these two benchmarks for detailed power analysis
because gsm executes a diverse set of instruction types, while
isort requires a limited set of instruction types. Looking
first at the power consumption of the proposed processors,
observe that the lowest power consumption for these two
benchmarks was with the M-SUBLEQ processor, where only
multiply instructions are handled by the co-processor. The
insertion sort benchmark did not require multiplication and
hence, for this benchmark the co-processor is never invoked
in the M-SUBLEQ configuration and the multiplier functional
unit is eliminated from the host processor, leading to lower
overall power.

To analyze the power consumption of TIGER, we simulated
the complete TIGER system (with cache) to gather detailed

2We focused on two benchmarks owing to the considerable run-time
required for full-delay post-layout simulation.

post-routing switching activity data. We then scaled up the
activities based on the fraction of cycles in which the TIGER
processor was stalled/idle due to cache misses, producing a
more fair comparison with the proposed processors (which
use on-FPGA memory and do not experience cache misses).
Overall, TIGER requires between ∼2.5–4× more power than
the proposed processor, depending on the configuration chosen.
With respect to static (leakage) power, the Altera power analy-
sis tools do not report leakage in the used vs. unused portion of
the FPGA. However, leakage current generally tracks with total
transistor width (silicon area) and we therefore expect TIGER
to exhibit ∼4–5× more static power than the ALL-SUBLEQ
processor.

4) Wall-Clock Time: Although the primary motivation for
the proposed processors is to achieve low-cost and power,
for completeness, we assessed performance as well. Table IV
shows the wall-clock time (in µs) for different variants of
processor. Observe that, relative to HOST ONLY, the co-
processor-based configurations require 2.4-8.4× more wall-
clock time, on average, owing to the number of SUBLEQ
instructions that need to be executed to emulate MIPS instruc-
tions. However, digging further into the data, we see that for
the M-SUBLEQ configuration, 8/12 benchmarks have superior
wall-clock time vs. HOST ONLY. When multiplications are
handled by the co-processor, the need for the host processor to
handle wide 64-bit products is eliminated, reducing the number
of memory access points in the host, decreasing its latency.
As long as such latency reduction is not offset by lengthy
multiply sub-routines on the co-processor, a win in wall-clock
time is achieved. Additional wall-clock time reductions are
seen for two benchmarks (fibcall, and vecadd) in the
MS+-SUBLEQ configuration.

As expected, the hand-designed pipelined TIGER processor
exhibits the best wall-clock time, ∼4× lower than HOST
ONLY, on average. The primary reason for this is TIGER’s
use of a register file and separate instruction/data caches3.
In our processors, instruction fetch, register operations, and
loads/stores are directed to a single main memory, which,
when implemented using on-FPGA memory, is dual-ported
with single-cycle access. The dual-port limitation implies that
several cycles are required to execute a single instruction in our
processor; whereas, TIGER ideally issues a new instruction
each cycle. We chose the memory style of our processors
to target the low-cost/power embedded space. An interesting
direction for future work is to assess our processors with cache
and register file.

5) Area-Delay product: Table V shows area-delay product
results, where area is measured in LEs and we have estimated
the area of a hard-multiplier tile in Cyclone II (which contains
two 9×9 multipliers) to be equal to two LABS = 32 LEs4 [23].

3TIGER’s cycle count data reflects cycles spent in useful work (not stall
cycles due to cache misses).

4A LAB (logic array block) in Cyclone II contains 16 4-LUT/FF pairs.

121

TABLE III: Dynamic power consumption for two benchmarks (mW).

Benchmark HOST ONLY w/ SUBLEQ Co-Processor TIGER
Hard Mult. Soft Mult. M-SUBLEQ MS+-SUBLEQ ALL-SUBLEQ Hard Mult. Soft Mult.

gsm 26.2 32.2 26.4 23.9 27.0 60.6 85.3
isort 18.4 21.4 16.2 20.7 23.4 67.6 87.5
geomean 22.0 26.2 20.7 22.3 25.1 64.0 86.4
Ratio 1.00 1.19 0.94 1.01 1.14 2.92 3.93
Ratio 0.84 1.00 0.79 0.85 0.96 2.44 3.30

TABLE IV: Wall-clock time (µs).

Benchmark HOST ONLY w/ SUBLEQ Co-Processor TIGER
Hard Mult. Soft Mult. M-SUBLEQ MS+-SUBLEQ ALL-SUBLEQ Hard Mult. Soft Mult.

adpcm 5537.3 5595.7 101366.1 125499.0 126028.1 1702.7 1748.7
bf 35484.2 35858.8 29971.6 371667.6 396062.3 7803.0 8013.8
bs 4.3 4.4 3.7 40.9 43.6 0.9 0.9
bubble 106513.6 107638.2 100512.9 327637.5 405918.3 28132.7 28893.0
crc 1544.2 1560.5 1304.4 20855.6 21248.7 419.4 430.8
fibcall 9.1 9.2 7.7 7.6 29.6 2.1 2.1
gsm 1365.7 1380.1 34346.1 44063.1 43412.8 430.3 442.0
intmm 31624.6 31958.5 915082.7 879034.3 891176.2 8217.7 8439.8
isort 47.7 48.2 40.4 122.0 167.7 11.7 12.0
jfdctint 218.8 221.2 2085.2 4000.1 4061.5 56.1 57.7
mpeg 579.5 585.6 489.5 519.4 1257.3 160.2 164.5
vecadd 478.8 483.8 404.5 371.8 1061.8 100.6 103.3
geomean 858.2 867.3 2064.5 5167.9 7204.9 217.3 223.1
Ratio 1.00 1.01 2.41 6.02 8.40 0.25 0.26
Ratio 0.99 1.00 2.38 5.96 8.31 0.25 0.26

Similar to the wall-clock time results, observe that most of
the benchmarks exhibit their best area-delay product in one or
more of the co-processor configurations (vs. in HOST ONLY),
although the average results do not reflect this trend, because
of the large wall-clock times seen for several benchmarks when
the co-processor is used.

The TIGER processor, because of its low wall-clock time
(discussed above) achieves the best area-delay product overall,
on average. However, we are nevertheless encouraged that
some benchmarks (e.g., fibcall) achieve close-to or better
area-delay product than TIGER (e.g., with soft multipliers),
especially considering our processors are synthesized from
C using HLS, and TIGER is hand-designed RTL. We again
underscore that the proposed processors are intended for low-
cost/power embedded applications; the performance of our
processors can be improved (at the expense of area) by
incorporating memory structures similar to TIGER (e.g., a
register file).

6) Application-Specific Processor Generation: From the
results above, it is apparent that no single processor offers the
best area-delay product for all applications, rather it depends
on the operations in the applications. In this section, we have
selected three applications which exhibit the best area-delay
product in different processors. Fig. 8 gives the normalized
area-delay product for jfdctint, crc, and mpeg for the
following processor configurations: 1) HOST ONLY (w/ soft
mult.), 2) M-SUBLEQ, MS+-SUBLEQ, ALL-SUBLEQ, and
TIGER (w/ soft mult.). Note that the area-delay product for
ALL-SUBLEQ is high due to the large wall-clock time, and,
although this configuration is attractive because of its low area,
there is no application found which performs better in this
configuration from the area-delay product angle.

In Fig. 8 the area-delay product values are normalized to the
HOST ONLY results. The leftmost benchmark, jfdctint,
has a diverse set of instruction types, including multiplication
operations. For this benchmark, when multiplication operations
are moved into the co-processor, the wall-clock time increases
significantly, overwhelming the gain from the area reduction.
The second application, crc, has no multiplication operations,

!!

"!

"!

#!

$!

#!!

!!"#$%&! #'#! ()*+!

!"
#$

%&
'()

*!
+#
)%
,-
)&
%.
!

/#
"*

01
2!

,-./!-012!3.45!678&9:!3;<=*8>%*:!
6%.?;1@A!
6.&%.?;1@A!
'11%.?;1@A!
/>+*'!3.45!678&9:!

B!

Fig. 8: Area-delay product for three applications (normalized
to HOST ONLY).

and by moving multiplication into the co-processor, area as
well as wall-clock time are reduced — area-delay product is
reduced by 40%. However, when more instruction types are
moved into the co-processor, the wall-clock time hit over-
whelms the gain from the area reduction. Since crc contains
shift operations, a considerable wall-clock time increase is ob-
served when shift is done in the co-processor. The last bench-
mark, mpeg, illustrates effectiveness of the MS+-SUBLEQ
configuration, which offers a 50% reduction in area-delay
product vs. the baseline. Surprisingly, for this benchmark, area-
delay product in MS+-SUBLEQ is even superior to that of the
hand-designed TIGER processor.

Although different processor configurations perform best
for certain applications, a key feature of the proposed proces-
sors is that they are all able to execute the full MIPS ISA.
This is as opposed to prior work in [7], [8], [9], where the
application-specific processors were only able to execute the
applications for which they were optimized.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a processor architecture

that executes standard MIPS-ISA binaries and permits trade-
offs between area/performance/power and is straightforward to
tailor to specific applications (while maintaining full support
for the MIPS ISA). The unique architecture incorporates a

122

TABLE V: Area-delay product (#LEs/1000×ms).

Benchmark HOST ONLY w/ SUBLEQ Co-Processor TIGER
Hard Mult. Soft Mult. M-SUBLEQ MS+-SUBLEQ ALL-SUBLEQ Hard Mult. Soft Mult.

adpcm 10.3 12.2 162.2 154.6 143.8 7.3 10.0
bf 66.3 78.4 48.0 457.9 451.9 33.5 45.8
bs∗ 8.1 9.6 6.0 50.4 49.7 4.0 5.4
bubble 199.1 235.2 160.8 403.6 463.2 120.9 165.0
crc 2.9 3.4 2.1 25.7 24.2 1.8 2.5
fibcall∗ 17.0 20.0 12.3 9.4 33.8 8.8 12.0
gsm 2.6 3.0 55.0 54.3 49.5 1.8 2.5
intmm 59.1 69.8 1464.1 1083.0 1016.8 35.3 48.2
isort∗ 89.2 105.4 64.6 150.2 191.4 50.1 68.3
jfdctint 0.4 0.5 3.3 4.9 4.6 0.2 0.3
mpeg 1.1 1.3 0.8 0.6 1.4 0.7 0.9
vecadd 0.9 1.1 0.6 0.5 1.2 0.4 0.6
geomean 1.6 1.9 3.3 6.4 8.2 0.9 1.3
Ratio 1.00 1.18 2.06 3.97 5.13 0.53 0.73
Ratio 0.85 1.00 1.74 3.36 4.34 0.45 0.62
∗Values are in milli (10−3) unit.

SUBLEQ OISC co-processor that can be used to emulate the
functionality of different classes of MIPS instructions, allowing
the main processor’s datapath/control logic to be reduced,
saving area. The processor is described in C and synthesized to
hardware with HLS, making it easy to modify and extend —
a feature we believe will keenly interest members of the
embedded computing community, enabling new research on
lightweight embedded processors. Results show the processor
uses 2.5–4× less area than a hand-designed Verilog RTL
pipelined MIPS processor, and 4–5× less power, depending
on the particular processor configuration used. For certain
applications, the proposed processor also achieves better area-
delay product than the pipelined MIPS.

Directions for future work include studying how the
processor’s performance changes when different memory
architectures are used (e.g., register files and caches),
as well as considering standard-cell implementations,
and exploring the impact of HLS constraints (e.g., loop
pipelining) on the implementation results. We also plan
to explore power-optimization strategies, such as clock
gating the co-processor or host processor accordingly
when idle. The proposed processor, benchmarks and
associated toolchain are open-source and available at:
https://github.com/Hara-Laboratory/Hirundo.

ACKNOWLEDGEMENT
This work was partially supported by KAKENHI

15H02679 and the Japan Society for the Promotion of Science
(JSPS).

REFERENCES
[1] A. Canis et al., “LegUp: An open-source high-level synthesis tool

for FPGA-based processor/accelerator systems,” ACM Trans. Embed.
Comput. Syst., vol. 13, no. 2, 2013.

[2] A. Rajendiran et al., “Reliable computing with ultra-reduced instruction
set co-processors,” in Proc. of DAC, pp. 697–702, 2012.

[3] University of Cambridge, http://www.cl.cam.ac.uk/
teaching/0910/ECAD+Arch/mips.html, The Tiger “MIPS”
processor., 2010.

[4] J. Cong et al., “High-level synthesis for FPGAs: From prototyping to
deployment,” IEEE Trans. on CAD, vol. 30, no. 4, pp. 473–491, 2011.

[5] C. Lattner and V. S. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in Proc. of CGO, pp. 75–
88, 2004.

[6] R. E. Gonzalez, “Xtensa: A configurable and extensible processor,”
IEEE Micro, vol. 20, no. 2, pp. 60–70, 2000.

[7] J. Trajkovic and D. Gajski, “Custom processor core construction from
C code,” in Proc. of SASP, pp. 1–6, 2008.

[8] J. Matai et al., “Trimmed VLIW: Moving application specific processors
towards high level synthesis,” in Proc. of ESLsyn, pp. 11–16, 2012.

[9] P. Yiannacouras, J. G. Steffan, and J. Rose, “Exploration and customiza-
tion of FPGA-based soft processors,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 26, no. 2, pp. 266–277, 2007.

[10] Y. Hara-Azumi, M. Kunimoto, and Y. Nakashima, “Emulator-oriented
tiny processors for unreliable post-silicon devices: A case study,” in
Proc. of ASP-DAC, pp. 85–90, 2014.

[11] M. Schoeberl, “Leros: A tiny microcontroller for FPGAs,” in Proc. of
FPL, pp. 10–14, 2011.

[12] H. Nakatsuka et al., “Ultrasmall: The smallest mips soft processor,” in
Proc. of FPL, pp. 1–4, 2014.

[13] N. Tsoutsos and M. Maniatakos, “HEROIC: Homomorphically en-
crypted one instruction computer,” in Proc. of DATE, pp. 1–6, 2014.

[14] M. M. Shulaker et al., “Carbon nanotube computer,” Nature, vol. 501,
pp. 526–530, Sept. 2013.

[15] O. Mazonka and A. Kolodin, “A simple multi-processor computer based
on subleq.” preprint on arXiv: CoRR/1106.2593, May 2011.

[16] ISO/IEC, “Information technology — Syntactic metalanguage —
Extended BNF,” ISO/IEC 14977:1996, 1996.

[17] J. Matai et al., “Designing a hardware in the loop wireless digital
channel emulator for software defined radio,” in Proc. of FPT, pp. 206–
214, 2012.

[18] W. Lim et al., “Batteryless sub-nw Cortex-M0+ processor with dynamic
leakage-suppression logic,” in Proc. of ISSCC, pp. 146–147, 2015.

[19] “SNU real-time benchmarks.” http://archi.snu.ac.kr/
realtime/benchmark.

[20] Y. Hara et al., “Proposal and quantitative analysis of the CHStone
benchmark program suite for practical C-based high-level synthesis,”
Journal of Information Processing, vol. 17, pp. 242–254, 2009.

[21] Altera, Corp., Cyclone-II FPGA family datasheet, 2015.
[22] Lattice Semiconductor, iCE40 FPGA family datasheet, 2015.
[23] Altera, Corp., Personal communication, 2015.

123

