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ABSTRACT
Clock network power in field-programmable gate arrays (FP-
GAs) is considered and two complementary approaches for
clock power reduction in the Xilinx R©VirtexTM-5 FPGA are
presented. The approaches are unique in that they lever-
age specific architectural aspects of Virtex-5 to achieve re-
ductions in dynamic power consumed by the clock network.
The first approach comprises a placement-based technique
to reduce interconnect resource usage on the clock network,
thereby reducing capacitance and power (up to 12%). The
second approach borrows the “clock gating” notion from the
ASIC domain and applies it to FPGAs. Clock enable sig-
nals on flip-flops are selectively migrated to use the dedi-
cated clock enable available on the FPGA’s built-in clock
network, leading to reduced toggling on the clock intercon-
nect and lower power (up to 28%). Power reductions are
achieved without any performance penalty, on average.

Categories and Subject Descriptors
B.7 [Integrated Circuits]: Design Aids

General Terms
Design, Algorithms

Keywords
Field-programmable gate arrays, FPGAs, power, optimiza-
tion, low-power design, clocking

1. INTRODUCTION
While field-programmable gate arrays (FPGAs) are a widely-

used platform for many digital circuit applications, one area
where they are virtually absent is within the low-power do-
main. The programmability of FPGAs is achieved through
large numbers of static RAM (SRAM) configuration cells,
programmable logic and interconnect fabrics. Naturally,
these structures represent an “overhead” in comparison to
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a fixed-function ASIC. Such overhead contributes to longer
metal wirelengths and higher capacitance, as well as higher
leakage currents. To be sure, a recent work by Kuon and
Rose compared 90nm FPGAs to ASICs and found FPGAs
consume 7-14 times more dynamic power than ASICs, and
5-87 times more leakage power [15].

Bridging the power gap between FPGAs and ASICs re-
quires a broad research thrust across the spectrum from ar-
chitectures (e.g. [20, 22, 21, 7, 13, 16]), to circuits (e.g. [23,
11, 29, 4]), to CAD algorithms. Commercially, we also see
the major vendors increasing their emphasis on power: the
Actel IGLOO, Altera Stratix-III and Xilinx Virtex-5 FP-
GAs all incorporate special features and circuits for reduced
power [1, 3, 32].

Our work falls in the CAD domain, where prior studies
report power reductions at various stages of the flow. The
research described in [28, 9, 27, 10] considers power opti-
mization in front-end synthesis. Power-aware technology
mapping and the interactions between power-aware map-
ping, packing, placement and routing algorithms have been
studied [17]. In the back-end of the flow, power has been the
objective of clustering [8, 26] placement and routing [14, 24],
with the general approach being to reduce the capacitance
of the design signals having high toggle rates. Post-routing
optimizations for dynamic and leakage power minimization
have also been demonstrated [5, 14].

FPGAs have dedicated programamble clock networks spe-
cially designed to distribute clock signals to all logic and IP
blocks with low skew and latency. Prior work considered the
breakdown of dynamic power in the Xilinx Virtex-2 FPGA
and reported that up to 22% of power consumption is due to
clocking [25]. In this paper, we propose two approaches to
clock power reduction. We first describe a placement-based
technique that accounts for the underlying architecture of
the clock network to achieve a reduction in clock routing ca-
pacitance. We next describe an approach for clock gating in
FPGAs, which is a known power reduction technique in the
ASIC domain. We selectively migrate clock enable signals
on flip-flops to use the clock enable pins available on the
clock network buffers. While this approach does not tar-
get clock network capacitance, it does reduce the switching
activity on the clock network, reducing power. Board-level
current measurements show the efficacy of both techniques
for power reduction.

To our knowledge, no prior research considers clock gating
in the FPGA context. However, the related topic of dynamic
clock management for FPGAs was considered in an early
paper [6]. Rather than completely disabling the clock signal
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Figure 1: Virtex-5 FPGA CLB and SLICE.

to circuit blocks when their output does not affect overall
circuit outputs (clock gating), dynamic clock management
seeks to slow down the clock supplied certain circuit blocks
when high throughput is not required of those blocks. The
prior work dealt primarily with circuit-level techniques, not
CAD issues.

For clock-aware FPGA placement, the only works to con-
sider CAD and architecture for reducing FPGA clock net-
work power are those of Lamoureux and Wilton [18, 19], and
the very recent paper by Vorwerk et al. at Actel [30]. Mod-
ern FPGAs are partitioned into regions, with limitations on
the number of clock signals that may be routed into any
given region. The placer in [19] minimizes the number of
regions spanned by a clock network and also minimizes the
number of resources used within regions, thereby reducing
clock routing capacitance. Unlike [19], in this paper we do
not consider which clocks should be routed on global versus
regional clock resources – our placer assumes such decisions
have already been made. However, like [19], our placer does
consider minimizing the clock network resources used within
a region, albeit using what can be viewed as an extension
of the placement algorithm in [19]. Furthermore, we target
a 65nm commercial Xilinx FPGA. With respect to Vorw-
erk [30], we target a different commercial FPGA, Virtex-5,
and consequently use a somewhat different approach to clock
capacitance reduction.

It is worth reinforcing that an important distinction of
our work versus all prior publications on FPGA clock power
is that our power results are based on board-level current
measurements of a real commercial FPGA, and not based
on estimates of interconnect capacitance and net activity.

The rest of this paper is organized as follows: Section 2
provides relevant background on the clock network archi-
tecture of the Virtex-5 FPGA, which is the target of our
optimization. Our placement-based approach to clock ca-
pacitance reduction is described in Section 3. Section 4
introduces the clock gating optimization. A discussion of
results appears in Section 5. Conclusions and suggestions
for future work follow in Section 6.

2. BACKGROUND
In this section, we describe the architectural features of

Virtex-5 that are relevant to the two power optimization
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Figure 2: Clock regions in Virtex-5.
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Figure 3: A clock region in Virtex-5.

methods proposed in the paper. We first give an overview of
the clock network architecture of Virtex-5, and then move
on to describe the available hardware resources for imple-
menting clock enables.

2.1 Virtex-5 Clock Network Architecture
The basic element for implementing combinational logic in

Virtex-5 is called a configurable logic block (CLB), which con-
tains two SLICEs, each of which contain four 6-input look-
up-tables (LUTs) and four registers. A Virtex-5 SLICE and
CLB are shown in Fig. 1. Each CLB’s inputs and outputs
connect to a programmable interconnection network that
permits CLBs to be connected to one another, as needed for
the design implemented in the FPGA. In addition to CLBs,
the Virtex-5 fabric contains large hard-IP blocks, such as
block RAMs and DSPs, as well as tiles for I/O, clock man-
agement and varied other tiles.

Today’s digital designs may contain many different clock
signals, and the Virtex-5 FPGA is designed to accomodate
this. Global clock buffers (BUFGs) within Virtex-5 receive
clock signals, from either external or internal sources, and
feed such signals into the dedicated global clock intercon-
nection network. The global clock interconnection network
distrubutes clock signals throughout the FPGA with low-
skew, low-jitter and low-power.

Each Virtex-5 chip contains 32 global clock buffers and
therefore, can support the presense of 32 global clock signals
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Figure 4: Clock enable options in Virtex-5 FPGA.

in the design. Architectural constraints limit the possibility
of having 32 separate global clock signals reach each and
every flip-flop on the device1. Instead, the Virtex-5 fabric
is partitioned into clock regions for the purposes of clock
distribution. Clock regions in Virtex-5 are 20 CLBs tall and
span half of the Virtex-5 die horizontally. Up to 10 global
clock signals may be fed into any given region. The 10 global
clocks within a region may be selected from any of the (up
to) 32 global clock signals present in the design. Fig. 2
depicts the eight regions in the Virtex-5 LX30 FPGA; larger
members of the Virtex-5 family will contain more regions.
Fig. 3 gives a blow-up view of a clock region. Observe that
up to 10 clock signals, driven by 32 BUFGs, are selected to
be driven into the clock region.

2.2 Clock Enables in Virtex-5
As will be discussed in Section 4, clock gating involves se-

lectively disabling the clock signal from reaching sequential
elements in the design. Here, we introduce two clock enable
mechanisms built-in to Virtex-5 that may be used for real-
izing clock gating. Fig. 4(a) shows that the registers within
a SLICE have a clock enable pin, permitting clock enables
to be implemented at a fine level of granularity. Observe
that all registers in the SLICE must receive the same clock
enable signal.

Fig. 4(b) illustrates that the global clock buffer (BUFG)
that drives clock signals into the dedicated clock intercon-
nection network has an enable pin. When the BUFG is used
with the enable, it is referred to as a BUFGCE. The enable
pin can be driven by a signal from an I/O or an internal
signal. When the enable is deasserted, the clock network
driven by the BUFG becomes silent and no dynamic power
is dissipated.

A key observation is that using the clock enable pins on

1In addition to flip-flops, DSP blocks and block RAMs and
all other synchronous blocks must capable of receiving global
clock signals.
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Figure 5: Clock region interconnect details.

SLICEs, as in Fig. 4(a), does not eliminate toggling on the
global clock network and therefore does not save dynamic
power on the global clock network. However, using the clock
enable pin on the BUFG, as in Fig. 4(b), ceases all toggling
on the global clock network driven by the BUFG.

3. CLOCK SPINE REDUCTION
The clock resources in Virtex-5 FPGAs provide consider-

able flexibility for varied clocking needs. The Xilinx phys-
ical design tools must appropriately allocate the clock re-
sources to the clock networks in customer designs. As we
will demonstrate, the power consumption of the clock net-
work is strongly influenced by decisions taken by the design
tools.

3.1 Clocks and Power Consumption
As described in Section 2, clock resources in Virtex-5 FP-

GAs are organized into clock regions. Fig. 5 shows a de-
tailed view of the interconnect structure within a clock re-
gion. There are ten root spines (shown as dark lines in the
figure) horizontally crossing the center of the region2. At
the intersection of each column, each horizontal root spine
can be programmably connected to two vertical spines: one
traveling north for the top-half of the region, and one trav-
eling south for the bottom-half of the region. The vertical
spines are shown as vertical dashed lines in Fig. 5. Since
there are 10 horizontal root spines in a region, there are
20 vertical spines for each column of the region. The logic
blocks in the region receive their clock signals from the ver-
tical spines. Each upper or lower vertical spine corresponds
to a single horizontal root spine. Every horizontal root spine
can be driven by one of 32 global clock buffers (BUFGs), as
shown in Fig. 3.

The power consumption of a clock signal within a clock
region is mainly determined by the number of vertical spines
connected to the root spine. A root spine is only connected
to a vertical clock spine if the placement necessitates it. If a

2For clarity, fewer than ten root spines are shown in the
Fig. 5.
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Figure 6: Initial placement of clock loads.

horizontal root spine carries a clock signal, clkA, connections
to a vertical spine will only happen for those half-columns
containing a load of clkA. Vertical clock spines contribute
significantly to the capacitance of the clock signal, thereby
affecting clock power. Indeed, the total power consumption
for a clock signal is strongly tied to the sum of the number of
vertical spines used in all the clock regions within which the
load components of the clock are placed. Roughly 90% of
clock network capacitance is contributed by vertical spines
in typical designs.

3.2 Reducing Clock Spine Usage
Traditionally, the primary goal of placement is to mini-

mize the total wirelength of routing connections among all
connected components. Consequently, the loads of a clock
signal are generally placed such that the wirelengths of the
non-clock signal connections between such loads are mini-
mized. Fig. 6 shows an example of placement results for
components that are related to five different clock signals.
Tiles marked with letter A indicate that load components of
Clock A are placed on them. Similarly, Clock B, Clock C,
Clock D, and Clock E have load components placed on tiles
that are marked with letters B, C, D, and E, respectively.
The load components of each clock signal are spread across
many logic block columns. Within this clock region, eigh-
teen vertical clock spines are used, based on the placement
of all the load components of the five clock signals.

To reduce power consumption on clock networks, we can
alter the placement to prefer that loads of the same clock
share the same vertical spines. This can be accomplished
by prefering to place loads of a given clock signal on the
same half-column. Fig. 7 shows the results after changing
the placement for the load components. The adjusted place-
ment uses eight vertical spines, as opposed to the eighteen
vertical spines used in Fig. 6. Certainly, the clock power
consumption for the placement in Fig. 7 will be lower than
that for the placement of Fig. 6. The example of Figs. 6
and 7 show the core idea of our placement optimization:
aim to minimize vertical clock spine utilization by prefer-
ring to place loads of the same clock signal on the same
half-columns within a clock region.
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Figure 7: Placement with reduced clock spine usage.

In any logic circuit, the speed performance is generally
limited by the delays of logic signals, and not clock sig-
nals. As such, if we are too aggressive in our minimiza-
tion of vertical clock spine usage, we may end up increas-
ing the delays of the logic signals and increasing the crit-
ical path delay. Therefore, placement decisions regarding
clock spine reduction must be made judiciously, considering
the design’s speed performance. As described in the next
section, our placement optimization only aims to co-locate
the loads of a clock signal on the same half-column, if the
loads are already close to one another in the wirelength and
performance-driven placement. Therefore, after our clock
spine-aware placement, there may still remain some loads of
the same clock using multiple vertical spines that are distant
from one another.

3.3 Implementation
The Xilinx placer is based on a multi-step flow beginning

with I/O placement and clock region assignment, followed by
analytical (mathematical) placement, and ending with swap-
based optimization. A more detailed overview of the placer
appears in [2]. Here, we focus on the optimization step,
which is used to improve the analytical placement results.

The optimization is conducted by attempting a series of
pair-wise component swaps between two locations on the
FPGA. For an arbitrary component placed on a location,
called its source site, the optimizer will consider a number
of alternative locations, called target sites, to which to move
the component. For each pair of source and target sites, the
optimizer will evaluate the impact caused by the component
swap between the two sites. Only the favorable swap at-
tempts will be accepted. The overall placement is improved
by iteratively choosing all of the placed components, one
after another, as source components, and finding the best
target site to move to. The decision on whether or not each
attempted swap between any pair of components leads to a
better quality placement is guided by a cost function. The
cost function that is used in optimizer, described in [14], is:

Cost = a · W + b · T + c · Pavg (1)



where W represents wirelength cost, T represents timing
cost, and Pavg represents the estimated dynamic power,
which is computed as in [14], and a, b, and c are scalar
constants.

Clock spine optimization is incorporated into the opti-
mization step through a cost function extended with an ad-
ditional term:

Cost = a · W + b · T + c · Pavg + CClockSpine (2)

where CClockSpine reflects vertical clock spine usage. The
purpose of the term, CClockSpine, is to direct the optimizer
to reduce total vertical clock spine usage and reduce clock
power.

CClockSpine in (2) encourages clock load components to
share common vertical spines by moving them to a common
column, or columns, of sites. To achieve this, we define two
types of forces, called anchoring forces and attracting forces,
and use these forces within CClockSpine.

The anchoring notion decides whether or not a vertical
spine should be used for a clock to attract and hold loads of
the clock to the corresponding column. More loads placed
on the column naturally form a stronger force to attract
other loads. The attracting force can be viewed as a needle
pointing in the direction towards which a load component
should be moved. The cost function component encourages
the load components of the same clock to move to a smaller
number of columns, thereby increasing the sharing of the
clock spines. Our cost function also identifies and selects
certain logic block columns as anchor columns (described
below), which can be thought of as the preferred destination
columns that load components should move to.

For each clock load component, our cost function evaluates
whether or not its current site can share a vertical clock spine
with other load components of the same clock. The more
components that share the same spines, the lower the cost
value is. At the same time, the shorter the distance between
the current component and the closest anchor column, the
lower the cost value. Before we introduce the cost function
term, we define several parameters:

• Ni,j : Number of loads of clock j placed on a half-
column, i.

• Dk: Distance (in columns) from a clock load k to the
closest anchor spine column for the clock signal con-
taining load k. For example, if load k is on clock signal
j, Dk is the distance from the column where k is placed
to the closest anchor column for signal j.

• Clksi: Set of clock signals used on vertical half-column i.
Each of these will require a separate vertical spine.

The cost function for clock spine minimization is:

CClockSpine =
n∑

i=1

∑

j ε Clksi

S

Ni,j

+
m∑

k=1

A · Dk (3)

where n is the number of vertical half-columns, S and A are
constants, and m is the number of clock loads in the design.
Essentially, the first operand of + in (3) walks over all used
vertical clock spines and tallies their costs, where the cost of
a spine is S divided by the number of loads routed through
it. This term reflects anchoring forces. Parameter S in (3)
is set to 0 for the case of anchor clock spines.

The second operand of + in (3) reflects attracting forces.
The intent is to draw clock loads towards anchor spines.
Specifically, this term represents the total cost of clock loads
that are not placed on an anchor clock spine. Dk equals zero
if load k is already placed on an anchor spine. By properly
choosing the values of constants S and A, we can tune the
balance between the attraction and anchoring components of
the clock spine reduction cost function. Likewise, the mag-
nitudes of S and A can be used to trade-off the importance
of reducing clock spines with other traditional placement
criteria, such as wirelength and speed performance.

The selection of anchoring spines can be determined natu-
rally by the optimizer through iterative swaps between pairs
of placed components. To improve the predictability of the
spine reduction results, before the optimizer starts, we selec-
tively promote a set of vertical spines as anchors. Consider
a vertical half-column i with a load of clock j placed on it.
We wish to determine if i should be designated as an anchor
column for clock j. Define:

• Di,j : Distance from column i to the closest anchor
column for clock j in the region.

• Commoni: The set of clock signals used on column i

having the most loads.

Using these definitions, column i is qualified as an anchor
for clock j if:

Quali,j = [(Di,j ≥ width)
∨

(Ni,j ≥ thresClk)]
∧

(4)

[(|Clksi| ≤ thresCol)
∨

(j ε Commoni)]

where width, thresClk, and thresCol are empirically-derived
tuning parameters.

The first clause in (4) qualifies i as an anchor for clock
j if there is no other anchor column nearby. The second
clause qualifies i if the number of loads of j already placed
on i exceeds a given threshold. The last two clauses con-
sider the competition between clock signals for designation
as anchors on a given column. Concretely, the third clause
checks whether the number of different clocks competing for
column i exceeds a threshold. If the threshold is exceeded,
column i is only designated as an anchor for clock j, if j

happens to be one of the clocks with the most loads placed
on column i (fourth clause).

The pre-selection process walks from left-most column to
the right-most column in each clock region, and for each col-
umn that holds at least one clock load, it determines whether
or not the column should be selected as an anchor using (4).
In the event that Quali,j is false, a nearby column is selected
as an anchor for clock j. Recognize that the pre-selection
process is conducted once for every clock signal.

3.4 Results
The power reduction technique described above has been

incorporated into the Xilinx commercial tools and will be re-
leased to customers in the forthcoming ISETM11.1i software
release. We follow the experimental methodology in [14],
where power is evaluated on a set of designs collected from
Xilinx customers. The designs have been augmented with a
built-in random vector generator attached to their data in-
puts. A linear feedback shift register-based (LFSR-based)
pseudo-random vector generator is used for input vector
stimulus. This permited board-level current measurements



Table 1: Clock spine reduction results.

Spine Power
Circuit LUTs FFs Reduction Reduction

industry1 22927 3021 46.7% 3.0%
industry2 23488 6641 26.9% 1.0%
industry3 15814 1378 11.5% 1.4%
industry4 23119 25967 15.5% 1.0%
industry5 8273 3747 42.0% 9.9%
industry6 14351 4620 8.6% 3.9%
industry7 26754 2163 47.6% 4.0%
industry8 11877 21311 21.4% 1.5%
industry9 19340 8311 22.0% 0.4%
industry10 14011 10022 16.7% 12.5%
industry11 16253 16612 5.4% 1.5%
industry12 3022 2736 18.3% 5.4%
Average: 23.5% 3.8%

of power, without requiring externally supplied input vec-
tors. Power results are based on measured current drawn
from the Vccint power supply while circuit inputs are excited
with random vectors.

To evaluate the power savings of clock spine optimization,
each benchmark circuit was placed and routed twice: with
and without clock spine optimization. In both cases, the
same aggressive speed performance constraint was supplied
to the place and route tool. We compare the baseline power-
aware flow described in [14], with the same flow augmented
with clock spine reduction. Table 1 shows the power benefits
of clock spine reduction.

We first examine the effectiveness of our approach in re-
ducing vertical clock spine usage. Columns 1, 2 and 3 of
Table 1 list a set of benchmark circuits, and the number
of LUTs and flip-flops (FFs) in each circuit. Column 4 of
Table 1 shows the percentage reduction in clock spine us-
age for each circuit when clock spine optimization is turned
on. Some circuits exhibit a modest reduction in spine usage
(5%); however, for other circuits, spine usage is reduced by
nearly half. The data demonstrates that (3) is indeed very
effective in co-locating loads of clocks on common spines,
thereby reducing spine count.

Column 5 of the table shows the percentage reduction
in power. Some designs show virtually no power benefit,
while the maximum benefit seen was about 12.5%. The
power benefits in column 5 do not track well with the spine
reductions in column 4. We believe the reason for this is that
although preferring to place loads on common vertical spines
will certainly reduce clock power, it may end up elongating
non-clock logic signals, resulting in higher power on such
logic signals, canceling out some clock power benefits.

Nevertheless, on average, our approach produces nearly
4% power reduction, on average, and can be combined with
the already-existing optimizations in the Xilinx power-aware
flow (described in [14]). Since clock spine optimization is
integrated into the placer’s cost function, it is conceivable
that it may negatively affect the maximum achievable per-
formance for a design. To investigate this, we used an it-
erative approach to find the maximum achievable frequency
for each benchmark. We performed this analysis for imple-
mentations with and without the clock spine optimization

a) Clock region placed without clock spine optimization

b) Clock region placed with clock spine optimization

Figure 8: Clock network routing in a single region
without and with clock spine reduction for a bench-
mark circuit.

turned on. The results were noisy with some circuits exhibit-
ing improved performance and some degrading. On average,
across all circuits, we observed a degradation of 0.3% in per-
formance due to our clock spine reduction techniques. Thus,
on average, the power benefits shown in Table 1 do not come
with a performance hit.

Figs. 8 and 9 qualitatively illustrate the effects of clock
spine optimization for one benchmark. Fig. 8 shows the ac-
tual clock signal routing in a single region of the Virtex-5
chip. Part (a) of the figure shows the clock signal routing
without clock spine optimization; part (b) shows the clock
signal routing in the same region, with clock spine optimiza-
tion turned on. Observe the reduction in the number of used
veritcal clock spines in part (b) of the figure. Fig. 9 shows
the clock signal routing across the entire Virtex-5 FPGA for
the same benchmark circuit. Again, part (a) of the figure
shows the results without clock spine optmization; part (b)
shows the results with clock spine optimization. Though it
is difficult to discern precise details from the figure, a re-
duction in clock spine usage is apparent when clock spine
optimization is applied, as is an improved organization and
regularity in the clock signal routing.

4. CLOCK GATING
Clock gating is a simple and effective method for reduc-

ing dynamic power consumption. Clock gating decreases
dynamic power by eliminating unnecessary toggling on the
outputs of flip-flops of a circuit, gates in the fanout of the



a) Without clock spine optimization

b) With clock spine optimization

Figure 9: Clock network routing without and with
clock spine reduction for a benchmark circuit.
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Figure 10: An example of “classic” clock gating.

flip-flops, and clock signals. Fig. 10 depicts a classic exam-
ple of clock gating. In part (a) of the figure, we see two
register files on the left, each feeding a combinational logic
circuit. The outputs of the two combinational logic circuits
feed the inputs of a multiplexer. The multiplexer’s select
signal, sel, selects which combinational circuit’s output is
passed to the input of a destination register file. Part (b) of
the figure shows the circuit after clock gating has been ap-
plied. The signal sel is used to derive a clock enable signal
on clocks feeding the input register files. Power is reduced
through several mechanisms. First, the capacitive loading
on the clock network itself is reduced. Second, unnecessary
toggling within the combinational circuits is eliminated. In
particular, in the optimized circuit, toggling only occurs in
the combinational circuit whose output is selected by the
multiplexer to be passed to the destination register file.

Clock gating has been used extensively in ASICs for power
optimization, e.g. [12]. However, clock gating has not been
explored in depth for FPGAs. In this section, we present a
simple clock gating technique for Virtex-5 FPGAs. Our ap-
proach is related to that in described in [31], which proposed
ASIC clock gating at the root of the clock tree, as opposed to
clock gating at the level of the clock signal’s load registers.

Clock gating in FPGAs is different from ASICs because of
the fixed pre-fabricated clock interconnection network. Our
approach to clock gating is best understood by an example.
In Fig. 11, a clock is driving a number of flip-flops. The
top two rows of flip-flops are connected to a clock enable
signal, clkEnable, whereas the bottom row of flip-flops is
not connected to any clock enable signal. Observe that the
clock is driven by global clock buffer, BUFG, as described in
Section 2. In order to gate the clock, we instantiate a new
global clock buffer and use the clock enable on the global
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Figure 12: Clock network after clock gating trans-
formation.

clock buffer, shown previously in Fig. 4. The new global
clock buffer, called BUFGCE, is shown in Fig. 12. The input
to this buffer is also clk, however, the clock enable of this
buffer is connected to flip-flop’s enable signal clkEnable, and
the clkEnable signal is disconnected from the flip-flops it was
previously feeding. The newly gated clock now feeds the flip-
flops in the top two rows. In order to feed other flip-flops, we
keep the original buffer and the ungated clock will feed the
remaining flip-flops in the bottom row. Note that BUFGCE
is synchronous with respect to the original clock, clk, hence
any glitch in the enable signal will not affect the gated clock.

At its core, our optimization consists of migrating a pre-
existing clock enable signal on load flip-flops to use a clock
enable pin on a global clock buffer. Although we introduce
a new global clock buffer, driving a separate clock network,
power is saved overall because toggling is reduced on the
newly introduced clock network, and the capacitance of the
original network is reduced. Note that the classic example in
Fig. 10 saves power both in the combinational logic and on
the clock signal; however, our approach only saves power on
the clock signal. We are not dynamically identifying new op-
portunities for clock gating; rather, we are shifting existing
clock enable signals to use the best FPGA resources.

The algorithm for clock gating is:

1. Identify the clock enable signal, CE, on load flip-flops.
We select a clock enable signal with a high number of

flip-flops connected to it, also considering the fraction
of time the clock enable spends in the logic-0 state.
We disallow the selection of clock enables driving flip-
flops that are connected to any synchronous set/reset
signals, as such clock enables could not be migrated
without affecting the circuit’s logic functionality.

2. Identify the clock signal, CLK, corresponding to flip-
flops driven by the selected clock enable signal, CE.

3. Instantiate a new BUFGCE, driven by CLK with a
new output net gatedCLK, which drives the clock pins
of all flip-flops connected to CE.

4. The CE signal is then attached to the clock enable
pin of the BUFGCE and the CE signal is disconnected
from the flip-flops it was previously driving.

The algorithm above is for a migrating a single clock en-
able signal to use the clock enable on a global clock buffer.
The optimization can be applied iteratively for multiple clock
enable signals within a single design. Certainly, the opti-
mization is most beneficial for those designs where a CE

signal drives a large number of fanouts. Diminishing re-
turns arise for cases of low-fanout clock enables. Since the
optimization involves instantiating additional global clock
buffers, we must also be careful not to exceed the number
of available clock buffers (32). Note also that we handle the
special case of all loads of a clock signal having the same
clock enable signal: introducing an additional BUFGCE is
not necessary in such a case.

4.1 Results
As with the clock spine optimization described in Sec-

tion 3, clock gating has been implemented in the Xilinx
commercial tools and will be released to customers in the
ISE 11.1i software. It is invoked after technology mapping
is complete, prior to placement. We use the same method-
ology in 3.4 to measure the power benefits of clock gating.
In this case, however, we use a different set of benchmark
circuits, selected based on their containing high fanout clock
enable signals. Section 5 discusses issues relating to combin-
ing both gating and clock spine reduction.

Table 2 shows the power reduction results for clock gating.
The first four circuits, industry-a,b,c,d, are DSP circuits,
while the remaining circuits are collected from customers
and are of unknown function. As shown in the table, very
large power reductions of over 20% are observed for the DSP
circuits. These circuits contain high fanout clock enable sig-
nals driving many flip-flops. When such signals are migrated
to use the enables on global clock buffers, there are two con-
sequences. First, as expected, total switched-capacitance on
the clock network is reduced, lowering clock power. Sec-
ond, a high fanout signal is essentially eliminated from the
design, lowering overall routing congestion and capacitance,
potentially leading to improved routing for non-clock logic
signals.

We also measured the performance impact of clock gating
and found that for the designs in Table 2, performance im-
proved by 1.1%, on average. However, due to the relatively
small number of circuits, we believe the performance benefit
falls in the noise range.



Table 2: Clock gating results.

Power
Circuit LUTs FFs Reduction

industry-a 677 893 18.1%
industry-b 1325 1773 18.0%
industry-c 2621 3473 21.7%
industry-d 10397 13193 27.9%
industry-e 19774 10564 1.8%
industry-f 16253 16612 2.5%
industry-g 19259 9972 4.4%
Average: 13.5%

5. DISCUSSION
While we have access to many customers circuits in Xil-

inx, our ability to use a given circuit as a benchmark for
power optimization research is limited by whether or not we
can adapt it to contain built-in input vector generation, as is
needed for board-level power measurements. Most circuits
received from customers have unknown functionality, and
as such, for many circuits, we cannot apply random input
vectors in a meaningful way to exercise internal signals suf-
ficiently. Therefore, we have relatively few benchmarks we
can use for power research.

The clock gating optimization described above targets a
specific class of circuits, namely, those containing high fanout
clock enables. So far, we have not found benchmark circuits
that benefit from both clock gating and clock spine reduction
cumulatively. That is, while a circuit may benefit from gat-
ing or spine reduction, we have yet to find circuits where we
conclusively observe additive gains. However, as we continue
to develop and receive more power benchmarks and apply
our optimizations, we are optimistic that we will discover
circuits that benefit from both optimizations.

6. CONCLUSIONS AND FUTURE WORK
Low-power is an important goal for FPGA vendors and

their customers. Clock power comprises a significant frac-
tion of dynamic power in FPGAs. In this paper, we pre-
sented two approaches for reducing clock power in Virtex-5
FPGAs. Our first approach is placement-based, and con-
sists of aligning the loads of a clock signal to reduce clock
spine usage and total clock network capacitance. The sec-
ond approach is a simple clock gating transformation: clock
signals on load flip-flops are migrated to use the clock enable
built into the global clock buffers in Virtex-5. Clock spine
reduction and clock gating reduce power by up to 12 and
28%, respectively.

There are several directions for clock gating that we plan
to explore in the future. In particular, we plan to build clock
gating into the synthesis steps of the CAD flow, to automat-
ically identify opportunities for gating and data shielding,
and synthesize the appropriate control signals. For clock
spine reduction, we plan to combine our optimization with a
commercial implementation of [19], which attempts to min-
imize the number of regions spanned by a clock. The two
approaches combine to form a comprehensive clocking so-
lution wherein both the number of regions is minimized, as
well as the number of used spines within each region.
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