
Resource and Memory Management Techniques for
the High-Level Synthesis of Software Threads into

Parallel FPGA Hardware

Jongsok Choi, Stephen Brown, and Jason Anderson
ECE Department, University of Toronto, Toronto, ON, Canada

legup@eecg.toronto.edu

Abstract—Recent work has proposed the high-level synthesis of
parallel software programs (specified using Pthreads or OpenMP)
into concurrently operating parallel hardware modules [6]. In this
paper, we describe resource and memory management techniques
for improving performance and area of hardware generated by
such software thread synthesis. One direction investigated pertains
to how modules in the HLS-generated parallel hardware should
connect to one another: 1) with a nested topology, or 2) with a
flat topology. In the nested topology, hardware modules are created
in a hierarchical manner: modules are instantiated inside within
modules that use them. Conversely, the flat topology instantiates
all hardware modules at the same level of hierarchy. For the
flat topology, we describe a system generator that automatically
generates the required interconnect between all hardware modules,
as well as flexibly shares or replicates functions, functional units, and
memories. We also explore methods to reduce memory contention
among hardware units that operate in parallel, by investigating
three different memory architectures which use: 1) a global memory
controller, 2) local memories, and 3) shared-local memories. Local
and shared-local memories are dedicated RAM blocks for a single
or a set of hardware modules, and help to increase memory band-
width by allowing concurrent memory accesses. We also consider
memory replication to localize memories in hardware modules, and
convert small memories to registers to further improve performance
and memory usage. Finally, we describe implementing locks and
barriers in HLS hardware: synchronization constructs used in
parallel programming. We show that with our resource and memory
management techniques, we can improve the geomean performance,
area, and area-delay product of parallel HLS-generated hardware
up to 41.6%, 38.3%, and 63.3%, respectively, for a set of 15
benchmarks.

I. INTRODUCTION

High-level synthesis (HLS) is an up-and-coming design
methodology for FPGAs, which allows a user to automatically
generate an RTL circuit description from a high-level software
specification. The advantage of HLS is that a circuit designer can
work more productively at a higher level of abstraction, reducing
time-to-market vs. hand-coded RTL. With the input specification
in software, HLS ultimately aims to make the performance and
power advantages of FPGA hardware accessible to those with
only software skills.

State-of-the-art FPGAs have high computational capacity
afforded by abundant logic cells, memories, and hard blocks.
For example, Xilinx recently announced the Virtex UltraScale
XCVU440, a 20-nm device with 4.4 million logic cells [20],
containing more than 20 billion transistors and making it the
worlds densest IC. Leveraging the available FPGA resources is
an important factor in meeting the performance requirements of
a hardware system, and by using HLS, we can exploit an FPGA’s
spatial parallelism more easily than when manually designing in
RTL. The LegUp high-level synthesis tool from the University

of Toronto [5] offers a unique feature for this purpose: it is
able to synthesize parallel software threads (specified using the
Pthreads or OpenMP standards) into parallel-operating hardware
modules [6]. Each software thread is synthesized into a concur-
rently operating hardware instance. Such an approach is attractive
as it enables software engineers to leverage hardware parallelism
through a programming paradigm they are already familiar with.
However, the synthesis of software threads by HLS, as described
in [6], has two limitations: 1) It synthesizes memory architectures
that can result in high contention among threads, and 2) It is
unable to allow threads to share resources (for example, to share
a particular functional unit). It is precisely these limitations we
address in this paper. Throughout this paper, we use thread to
mean both the software thread, and the hardware module arising
from the HLS of a software thread.

In the context of concurrently operating hardware threads, we
investigate two crucial aspects which affect circuit performance
and area: circuit topology and memory architecture. For circuit
topology, we first examine the nested topology, wherein hardware
modules are created and connected in a hierarchical manner,
such that a module or a functional unit is instantiated inside the
module where it is used. The nested architecture is intuitive and
easy to implement, and is also used by Xilinx’s Vivado HLS [19].
We compare this to a flat topology, where all modules are created
at the same level of hierarchy. For the flat circuit topology,
we describe a system generator, which automatically creates the
needed interconnect between all components in the system. The
system generator can also flexibly share or replicate functions,
functional units, and memories. In the presence of parallel
threads (parallel hardware), it automatically inserts arbitration
and deadlock-prevention circuitry.

Together with the circuit topology, we also investigate a
number of different memory management techniques, with the
goal of reducing memory contention between parallel threads.
We explore three different memory architectures using: 1) A
shared global memory controller, 2) local memories, and 3)
shared-local memories. A global memory controller allows
pointer aliases to be resolved at circuit run-time, but has limited
memory bandwidth. Points-to analysis can be used to determine
at compile time, which array a pointer can reference. With
this, we implement local and shared-local memories, which
are directly connected to the accessing modules and permit
concurrent accesses. With parallel threads, we also investigate
using memory replication to localize memories to each thread,
to further reduce memory contention. In parallel programming,
synchronization constructs can be required to ensure proper
execution of a program. We show how the points-to analysis can
be applied to implement locks and barriers efficiently. Lastly, we
describe memory-to-registers conversion, which helps to reduce
memory usage and latency. We evaluate the proposed topology978-1-4673-9091-0/15/$31.00 c�2015 IEEE

and memory architecture changes directly with LegUp HLS.

The contributions of this work are:

1) Analyzing the merits/disadvantages of the nested and the
flat circuit topologies. We compare this to the hierarchical
circuit topology used by Vivado HLS.

2) Presenting a system generator that can flexibly
share/replicate functions, functional units, and memories
between functions/threads, as well as automatically
inserting hardware to prevent deadlocks. We contrast this
with Qsys, the system integration tool from Altera.

3) Investigating the use of points-to analysis to create different
memory configurations, in addition to handling thread-
synchronization constructs.

4) Quantitatively evaluating the impact of circuit topologies,
and together with resource management techniques, on the
performance and area of parallel HLS hardware arising from
software thread synthesis.

Our work represents a step towards improving the performance
and area of parallel HLS hardware.

The remainder of this paper is organized as follows: Section II
discusses related work. Section III provides an overview of
the two different circuit topologies and Section IV presents
the system generator. Section V discusses the different memory
architectures with techniques to improve memory bandwidth. An
experimental study is described in Section VI and conclusions
are presented in Section VII.

II. RELATED WORK

A number of prior works have focused on the architecture
of HLS-generated circuits. [28] and [14] investigated imple-
menting efficient pipelined hardware for multi-threaded kernels.
[11, 9, 6], and [27] implement parallel hardware architectures
with Pthreads and OpenMP using HLS. Altera’s OpenCL com-
piler [18] also creates deeply pipelined hardware from mas-
sively parallel OpenCL kernels. Vivado [19] provides knobs
for pipelining both entire functions and loops. [8, 29, 4], and
[23] investigate implementing efficient loop pipelining hardware.
Such prior works pertain mainly to the micro-architecture of the
data-path produced by HLS. Conversely, our work considers the
system-level architecture, specifically, how functions, memories,
and functional units can be connected together within a larger
surrounding circuit and how they can be shared or replicated
between parallel modules. In fact, the techniques proposed in this
paper are compatible with prior work on synthesis of pipelined
hardware modules.

In terms of resource sharing, [21] discusses sharing across
call hierarchies using the flat topology, but not in the context of
parallel-operating hardware. [7, 13] investigate sharing resources
but within a module. In [22], resources are shared between loops
for optimizing throughput. In contrast, our work investigates
resource sharing between parallel threads. To our knowledge, no
other work has analyzed the impact of circuit topology together
with function, memory, functional unit sharing and replication
on the area and speed of parallel HLS-generated hardware.

III. CIRCUIT TOPOLOGY

Unlike software compilers, which target fixed processor ar-
chitectures, HLS offers the freedom to evaluate and choose the
best architecture for a specific application. The circuit topology
considered here is a dimension along which such a design’s
architecture may be optimized.

main

a b

c

d

e

(a) Call graph

a
main

c
b
c

d
e

(b) Circuit Architecture

Fig. 1: A call graph and its circuit architecture using nested
topology.

c
b

arg_A

logic arg_B
return_val

logic FU

Fig. 2: Internal architectures of module b and c.

In this section, we describe two circuit topologies, the nested
topology and the flat topology. In the nested topology, each
hardware module is self-contained, meaning that, aside from data
in memories, it does not rely on other hardware modules outside
of its own module hierarchy. Fig. 1a shows a call graph of a
program, and Fig. 1b shows the corresponding nested circuit
architecture. As depicted, the architecture is hierarchical, with
main being the top-level module, and its hardware modules
recursively instantiated inside. Note that due to the hierarchical
structure, there are two copies of module c. This is the default
architecture used by both LegUp and Vivado HLS. The hierar-
chical approach thus precludes the sharing of modules by other
modules, potentially leading to high area consumption.

Fig. 2 shows the internal architectures of modules b and c.
Observe that module c has a functional unit (FU) instantiated
within. In the nested topology, the arguments of a function
become input ports of its hardware module, and the return value
(if any) becomes an output port of the module.

The advantage of the nested topology lies in its simplicity:
connectivity between modules is entirely local. Any modules
used by a module are directly instantiated within the module
itself and connected inside. The hardware module interface is
aligned to that of software (i.e. arguments passed in become input
ports, any data returned become output ports). Each hardware
module is also self-contained, so if one needs to re-use a
particular module in a new hardware system, simply instantiating
that one module is sufficient.

However, the nested architecture is inefficient in a number of
ways. In the input software, if a function is called by multiple
different functions, the nested topology replicates hardware, as
was shown in Fig. 1b. Likewise, since functional units are in-
stantiated within hardware modules, sharing is precluded. Given
that dividers or float-pointing units are generally large, this can
considerably increase overall circuit area, particularly if such
functional units are used in many different modules.

Fig. 3 shows the circuit architecture using the flat topology,

FU

a

d

main b

c

e

inter-
connect

Fig. 3: Circuit in Fig. 1 with flat circuit topology.

memory

arg_A

arg_B

return_val
function

d

function
e

function
b

function
c

function
a

arbA

arbB

Fig. 4: An example interconnect generated by system generator.

for the same circuit shown in Fig. 1. In the flat architecture,
all modules reside at the same level of hierarchy, which enables
sharing of functions and functional units. As shown, only one
instance of module c is created, which is shared by modules
a and b. The system generator, described in the next section,
automatically creates the interconnect to directly connect or share
functions, functional units, and memories in both sequential and
parallel-execution modes.

IV. SYSTEM GENERATOR

For the flat circuit topology, we built a system generator to
automatically connect all communicating hardware components
in the system. The system generator handles both sequential and
parallel execution, generating a different interconnect optimized
for each case. It is similar to other system generators, such as
Qsys (the system integration tool from Altera), except that it
is completely integrated into the HLS framework. As such, it
requires no additional input from the user; whereas, with Qsys,
the user must specify which components connect to which other
components, through which type of interface.

Our system generator automatically creates the interconnect
by traversing the function call graph of the input program. All
connections are point-to-point, allowing concurrent independent
transfers. Each connection is composed of a pair of interfaces,
a master interface and a slave interface. A master interface
initiates a transfer, and a slave interface responds to the transfer.
For instance, a function accesses a memory through its master
interface (composed of address, enable/write enable, read/write
data ports), and the memory responds through its corresponding
slave interface. A single module can have multiple interfaces,
allowing concurrent transfers (i.e. a function can have multiple
interfaces to access multiple memories simultaneously, as well
as interfaces to call other functions, and access functional units).
When multiple master interfaces are connected to a single slave
interface, with the master components executing sequentially, the
system generator creates a simple OR gate to handle contention
efficiently. The OR suffices in this case, as long as inactive
masters output logic-0 to their corresponding OR inputs. When
multiple parallel masters are connected to a slave, a round-
robin arbiter is automatically created. This differs from Altera’s
Qsys, which creates a round-robin arbiter regardless of whether
the components are executing concurrently or sequentially, neg-
atively impacting area and Fmax. An example interconnect
generated by the system generator is shown in Fig. 4. In this
case, function a and b execute sequentially and share function
c, and functions d and e run in parallel and share a memory.
Each memory is dual-ported, so we create a separate arbiter for
each port to maximize memory bandwidth.

The system generator is also responsible for selectively
sharing or replicating common hardware modules, based on
a user’s performance vs. area requirements. If a function is
parallelized with threads, then the HLS tool creates as many
hardware instances of the function as the number of threads

FU

function
e0

function
d1

function
e1

function
d0

arb

function
main

(a) With functional
unit sharing.

FU

function
e0

function
d1

function
d0

function
main

FU

function
e1

(b) Without functional
unit sharing.

Fig. 5: Parallel hardware with/without functional unit sharing.

in the input program. If the threaded function has descendant
functions, then by default, the tool also replicates the descendant
functions in hardware to maximize throughput. For example,
Fig. 5 shows the circuit architecture where main forks two
threads to execute function d, which has a descendant function
e1. Sharing (Fig. 5a) vs. replication (Fig. 5b) of functional
units or memories is controlled by a configuration parameter. In
the case of replication, the component is instantiated inside the
module which uses it (Fig. 5b), creating a dedicated component
for that module. Replication of memories is further discussed in
Section V.

A. Automatic Deadlock Prevention

As shown in Fig. 4, arbiters are generated to allow concurrent
access by multiple masters to a shared resource. However, when
multiple masters request to access multiple common slaves at
the same time, a deadlock can occur. This is illustrated in
Fig. 6a, where functions d0 and d1 request to access both mem0
and mem1 at the same clock cycle (with each function have a
dedicated memory port to each memory). In the example, arb0
grants access to function d0, and arb1 grants access to function
d1. Both functions are not able to continue as they are both
waiting to receive a grant for the “other” memory – a deadlock2.
To prevent deadlocks, our system generator automatically inserts
deadlock prevention modules where necessary.

There are two parts to the deadlock prevention module, the
request module and the data-receiver module, denoted as rq
and rx in Fig. 6b. This set of deadlock prevention module is
created for each dedicated memory interface for each function
(rq/rx 0 and 1 are for function d0, and rq/rx 2 and 3 are
for function d1 in Fig. 6b). The request module handles the
request for a master interface to its connecting slave arbiter. It
ensures that once a master interface has received a grant from its
arbiter (which allows the master to access the slave in the same
cycle), it does not make the same request again (requests are
state dependent, thus being stalled in the same state would keep
the request signal high continuously). Returning to the deadlock
scenario described earlier, after the grants have been received
(and the respective memories have been accessed), the request
modules lower the requests from function d0 to arb0 and from
function d1 to arb1. Then, in the next cycle, only the requests
from function d0 to arb1 and from function d1 to arb0 remain
for arbitration, which are independent to each other, and thus a
deadlock does not occur. The circuit for the request module is

1If the descendant function is only called once, it may be beneficial to inline
the function, to allow additional compiler optimizations. This can be controlled
by the user through a configuration parameter.

2A function’s FSM remains stalled as long as its stall signal is asserted. Its
stall signal is a logical OR of all stalls for its master interfaces from their arbiters.

function d1

mem0

function d0

arb0

mem1

arb1

grant grantstall

(a) A deadlock situation.

arb0 arb1

rq0rx0

mem0 mem1

function d1function d0

rx1 rq2 rq1 rx2 rx3rq3

(b) With deadlock prevention
modules.

Fig. 6: Circuit architecture with/without deadlock prevention
modules.

simple, it contains a register which: 1) stores a 0 when the grant
is given for a master interface, but the stall is still asserted for
the function (due to stalls for its other master interfaces), and 2)
otherwise stores a 1. This register output is simply AND’ed with
the request from the master interface, preventing it from keeping
the request high once its grant is received. The request modules
essentially ensure that after all of the requests have been granted
once, the function is able to continue to execute, and it can work
for any number of requests.

Note that if concurrent requests from the same function reach
their corresponding memories at different clock cycles due to
contention, the data from the memories also returns at different
cycles. This results in incorrect execution, since the function
expects both data items at the same time. The purpose of the data
receiver module is to ensure that the data returned to the master is
received correctly, by buffering the data, as appropriate. If there
were no stalls, the data receiver passes through the returned data
directly, otherwise it returns the buffered data. The circuit for the
data receiver is also straightforward: It contains a shift register,
with its size equal to the latency of the slave, and it shifts in
1 into the LSB when the grant is given from the arbiter. When
the MSB of the shift register contains a 1, it indicates that the
slave is returning its data in that clock cycle. At this time, the data
receiver stores the data in its registers, and also passes it through
directly to the master (if the master was not stalled, the data is
needed in that clock cycle), and at other times it returns the stored
data. The data receiver is parametrized to allow connecting to
slaves with any latency and data width. For instance, it can be
connected to a divider, which has a latency equal to its bitwidth,
as well as a multiplier or a memory, which have shorter latencies.
It can also work for variable latency operations (i.e, off-chip
memory access), by enabling the shift register only when the
valid signal3 from the variable latency operation is received.

In summary, our system generator creates an efficient inter-
connect completely automatically, benefiting from the integration
within the HLS framework and access to the program’s call
graph in the compiler. It handles arbitration for sequential and
parallel execution modes, allows flexible sharing or replication of
functions and functional units, and inserts dead-lock prevention
modules when necessary. We believe these are unique features
of our work.

B. Advantages of Flat Topology with the System Generator

The flat circuit topology enables the efficient sharing of
modules. In the nested topology, in order to share a memory

3IP cores for variable latency operations, such as off-chip memory, have a
valid signal to indicate that the data being returned in valid in that cycle.

datapath

datapath

datapath

d

c

a

datapath

datapath

datapath
memory

c

b

main

(a) Sharing a memory in
nested topology.

memory

a

d

main

b

c

(b) Sharing a memory in
flat topology.

Fig. 7: Memory sharing in nested/flat topology.

between two modules, the accessing modules need connectivity
to the module where the memory is instantiated. If an accessing
module is deep in the function hierarchy, memory ports must
be created and signals passed across all intermediate modules,
as shown in Fig. 7a. In Vivado HLS, and when using the nested
topology in LegUp HLS, multiplexers are created at each level of
hierarchy (in the sequential case; i.e. when modules sharing the
memory are not operating concurrently). The size and the depth
of the multiplexers grows linearly with the number of functions
that access the memory and the depth of the call hierarchy.
Modules instantiated multiple times due to the nested topology
also increase the multiplexer size unnecessarily, as shown in
Fig. 7a for function c. This leads to poor performance and area.
Functions can be inlined to remove some multiplexers, but this
may increase circuit area. In the flat topology, all shared modules
are instantiated at the same hierarchy level, and we zero out all
memory signals when they are not being used, so that our system
generator can simply connect them through an OR gate (in the
sequential case), as shown in Fig. 7b. In the parallel case, OR
gates are replaced with arbiters, as is done with functional unit
sharing described earlier. In Vivado HLS, we were not able to
share functional units across different functions4. As for Altera’s
OpenCL Compiler, it simply inlines all descendants functions of
a kernel, eliminating the option to share functions or functional
units.

V. MEMORY ARCHITECTURES

Memory architecture can play a critical role in any hardware
system and memory bandwidth is often the limiting factor
for performance. A key architectural feature of FPGAs is the
availability of on-chip block RAMs which provide low-latency
memory accesses. Block RAMs are distributed throughout the
chip, and can be accessed in parallel. There are also an abundant
number of registers, which can also be used to store data. We
therefore examine the different ways we can make use of the
block RAMs and registers to reduce memory contention, in
the presence of parallel operating hardware. We first consider
three different memory architectures which use: 1) a global
memory controller, 2) local memories, and lastly 3) shared-
local memories. We use points-to analysis to designate arrays
for implementation in global, local, and shared-local memories.
Shared-local memories are shared by multiple modules in a
system, hence require logic to handle contention, which may
increase circuit area and latency. To mitigate this, we investigate
replicating constant (read-only) shared-local memories across
parallel modules to eliminate the overhead of arbitration logic.

4The Vivado HLS user manual shows that the config_bind configuration
with the min_op option can be used to share functional units globally in a
program. However, when we tried to share a divider in two separate functions,
Vivado HLS created a divider inside each of the functions.

d0

main

arb

global
memory

controller

shared local
mem 0

HW
lock

register

Replicated
ROM0

d1
Replicated

ROM1

local
mem

shared local
mem 1arb

arb

arb

arb

Fig. 8: Circuit using the different types of memories.

memA

memB

en

en

=

=
3

2

addr/data_in
en/write_en

tag
data_out

Fig. 9: Global memory controller architecture.

We also show how points-to analysis can be used to efficiently
implement locks and barriers for thread synchronization. Lastly,
we consider converting small memories to registers to lower
memory usage and latency. An example circuit containing all
of these features is shown in Fig. 8. In the figure, the functions
main, d0 and d1 execute in parallel, and they share the global
memory controller, shared-local memories 0 and 1, a register
module, as well as a hardware lock module. A local memory that
is used only by main is instantiated inside the function, and d0
and d1 have replicated constant memories instantiated inside. For
simplicity, only one port of memory is shown and the deadlock
prevention modules are also not shown. Each component is
accessed through a set of dedicated ports, allowing concurrent
accesses.

A. Points-to Analysis

To intelligently designate arrays for implementation in global,
local, shared-local memories, we use a points-to analysis, which
determines which memory locations a pointer can reference.
There have been many points-to analysis algorithms developed
by the compiler community. Andersen [2] described the most
accurate of these approaches, which formulates the points-to
analysis problem as a set of inclusion constraints for each pro-
gram variable, which are then solved iteratively. Steensgaard [26]
presented a less accurate points-to analysis, which used a set
of type constraints modeling program memory locations that
can be solved in linear-time. In this work, we use the points-
to analysis described by Hardekopf [16] and implemented in the
LLVM compiler by [12]. This algorithm speeds up Andersen’s
approach by detecting and removing cycles that can occur in
the constraints graph. For each memory access in a program,
the points-to analysis returns a set, which contains all the arrays
the address can possibly point to. If it returns a set of size 1,
it indicates that the address can only point to a single array,
which will be located in one logical hardware RAM by the
HLS tool (possibly split across several physical block RAMs
by the vendor’s RTL synthesis). Otherwise, the address points
to multiple arrays, which needs to be resolved at run-time.
Points-to analysis algorithms have varying levels of accuracy and
may be overly conservative, but for programs without dynamic
memory, recursion, and function pointers, most pointers are can
be resolved at compile time [25].

B. Global Memory Controller

The purpose of the global memory controller is to automati-
cally resolve pointer ambiguity at run-time. The global memory
controller is only created if there are pointer references that
cannot be resolved at compile-time with the points-to analysis
(i.e. pointers pointing to multiple arrays). Its architecture is
shown in Fig. 9. For clarity, some of the signals are combined
together in the figure. Even though the figure depicts a single-
ported memory, all memories are dual-ported by default. The
memory controller steers memory accesses to the correct RAM,
by using a tag, which is assigned to each array in the program by
the HLS tool. A tag is set to be the top 9-bits (which can address
up to 512 global memories; this bitwidth is easily configurable)
of an incoming address, and it is used to determine which
memory block to enable, with all other memory blocks disabled.
The same tag is used to select the correct output data between
all memory blocks. The lower bits of the address are used to
get the offset into the RAM. Each block RAM has latency of
one cycle, and the output of the multiplexer is also registered (to
improve Fmax), making a memory access two cycles by default.

The advantage of this memory controller is that it can support
generic pointers and resolves pointer references at run-time (by
using the tags). This permits the support of a wider range of
input programs, including those which may not be amenable to
pointer analysis. However, there are a number of drawbacks to
this memory architecture, in terms of its performance and area.
First, any memories in the memory controller must be accessed
sequentially. This is because the memory being accessed is
determined at run-time, and hence needs to be accessed through
a shared set of memory ports. This limits memory accesses to
two per cycle (owing to the underlying dual-ported memories). In
addition, the output multiplexer of the memory controller grows
linearly in size with the number of RAMs. Increasing the number
of global memories can hurt both the Fmax of the circuit as
well as its area. The performance and area deterioration becomes
worse when using the global memory controller with the nested
circuit topology, as was shown in Fig. 7a, due to the large amount
of multiplexing required to connect to the memory controller.
Despite this, the memory controller ensures that the circuit can
handle all types of pointer accesses, and may be needed for some
programs.

C. Local and Shared-local Memories

Using the points-to analysis, we can designate arrays in the
program to implement in local and shared-local memories. An
array is designated into a local or a shared-local memory if the
points-to analysis can determine that it is never referenced by a
pointer that points to multiple arrays. If such an array is only
accessed by a single function, it is designated as local memory.
Otherwise, if it is referenced in multiple functions, it becomes
a shared-local memory. Each local and shared-local memory
is accessed through a dedicated set of memory ports, allowing
concurrent memory accesses between memories. A local mem-
ory is instantiated inside the module which accesses it, hence
connected directly, and a shared-local memory is instantiated
outside the module, with an arbitration unit created to handle
memory contention between its users. Because local and shared
local memories have limited numbers of accessors, the memory
latency is set to one clock cycle. We have empirically found that
this improves the overall performance (the latency can also be
easily configurable by the user). In Vivado HLS, memory access
latencies are set to two cycles for all memories. Within local and
shared-local memories, we perform a number of optimizations

to improve performance. As described below, we replicate read-
only memories, and convert memories to registers. We can also
implement synchronization constructs efficiently with points-to
analysis.

1) Constant Array Replication: Constant arrays are imple-
mented in read-only memories (ROMs), and as such, can safely
be replicated in each accessing module. Although replication in-
creases memory usage, for memory-intensive applications, where
many threads contend for the same memories, it can be beneficial
to create a dedicated memory for each thread. By localizing the
memory to each thread, we can improve performance by reducing
stalls due to contention, and also decrease area by removing the
arbitration logic. Enabling this feature can be controlled through
a configuration parameter in our work.

2) Memory to Register Conversion: By default, LegUp HLS
implements all arrays in block RAMs. However, for small arrays
with few elements, implementing them in registers may be
beneficial to reduce memory usage. In LLVM, global variables
are treated the same way as global arrays. Thus, we detect when
an array has a single element, or if it is a global variable, and
we store it in a register module. LLVM has an existing compiler
pass called mem2reg, which promotes memory to registers [17],
however we found this to work only in a limited number of cases,
necessitating this optimization.

If the converted register is used by a single function, we
create the register inside the function, or if it is used by multiple
functions, we create a register module which is connected to
all of user functions by our system generator, which in turn
automatically creates the arbitration. Similar to how we had set
the memory latency 1 clock cycle for local and shared-local
memories, we can actually set the memory load latency for these
registers to 0 clock cycle, further reducing memory latency. In
addition, since the load latency is 0, the register outputs are
directly connected to the accessing modules, and do not need to
connect through the data receivers, which also reduces area.

As described, we can flexibly adjust the memory latencies of
the different types of memories to optimize performance, with
global memories having 2 cycles, local/shared-local memories
having 1 cycle, and memories converted to registers having 0
cycle.

3) Handling Synchronization: In parallel programming, syn-
chronization of threads can be required to ensure proper exe-
cution of the program. In Pthreads, locks are used to ensure
atomic access across threads, and barriers are used to synchronize
all threads at a certain point in a program. Both constructs
require the use of synchronization variables; a mutex variable
and a barrier variable. With points-to analysis, we can treat the
synchronization variables as memory variables, and classify them
as a shared-local memory (since they are accessed by multiple
modules). Points-to analysis returns a list of functions which use
the synchronization variable. Then, we create dedicated ports
from each function to each lock/barrier variable. When multiple
locks are used in a program, they each have dedicated ports
and can be accessed concurrently. Again, the system generator
automatically creates arbiters and dead-lock prevention modules
for each lock/barrier variable. Each lock and barrier variable is
replaced with a hardware lock module and a hardware barrier
module, respectively [6]. Communicating with a lock module is
achieved through memory loads and stores. To obtain the lock,
a thread polls on the lock module until it return a 1, which
indicates that the lock is unlocked. After it returns a 1 the lock
module becomes locked (returns a 0). To release a lock, the
owner writes back to the hardware lock module, which unlocks

it. The barrier hardware is implemented as a counter similarly
through memory loads/stores. Previously in [6], without the
points-to analysis, all locks and barriers needed to be accessed
through shared memory ports (also shared with memories), and
were created inside a central synchronization controller. Similar
to the global memory controller, the synchronization controller
steered accesses to the correct lock/barrier module at run-time
but limited concurrent accesses. With points-to analysis, we can
access multiple locks and barriers concurrently, independent of
other memories.

VI. EXPERIMENTAL STUDY

In this section, we study the impact of the the different circuit
and memory architectures on the performance and area of parallel
hardware. We consider in total 8 different architectures:

1) Nested topology with a global memory controller.
2) Flat topology with a global memory controller.
3) Architecture 2 plus divider sharing across threads.
4) Architecture 3 plus multiplier sharing across threads.
5) Architecture 4 plus local, shared-local memories (all mem-

ories have latency of 2 cycles).
6) Architecture 5 plus memory to register conversion (latency

of local/shared-local memories set to 1 cycle, register mod-
ule has latency of 0 cycle).

7) Architecture 6 plus constant memory replication across
threads.

8) Architecture 7 minus multiplier sharing across threads.

With each successive architecture, we enable/disable a feature,
allowing us to analyze its impact in isolation. Architectures 1,
2, 3, and 4 have no local or shared-local memories. A global
memory controller can be used in any of the 8 architectures,
but is only created for benchmarks which require it. Comparing
architectures 1 and 2 reflects the utility of the flat architecture
vs. the nested architecture. With architectures 3 and 4, we can
examine the impact of sharing functional units. Architecture 5
shows the impact of having dedicated memories with local and
shared-local memories, and Architecture 6 illustrates the effect
of reducing the memory access latencies. With, Architecture 7,
we can investigate the effect of memory replication on memory
contention, and lastly, with Architecture 8, we analyze the
area/performance impact of disabling multiplier sharing across
threads. For the rest of this paper, each architecture is referred
to by its number (i.e. Arch. 1 = nested with global memory
controller).

A. Benchmarks

We use a total of 15 benchmarks, each of which is paral-
lelized with Pthreads. The benchmarks are described below. Each
benchmark includes built-in inputs and golden outputs, with the
computed result checked against the golden output at the end of
the program to verify correctness.

• Alphablend: Alphabends two images.
• Barrier: An accumulation benchmark which uses a barrier.
• Blackscholes: Options pricing via a Monte Carlo approach.
• Box Filter: A convolution filter commonly used in image

processing. C implementation of the filter adopted from [1].
• DF: Adopted from the CHStone [15], it performs double-

precision floating-point operations using 64-bit integers.
• Division: Integer division of two arrays.
• Dot Product: Dot product of two arrays.
• Hash: Four different hashing algorithms, with the number

of collisions compared at the output.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time Execution Cycles Fmax Logic Util. DSPs M20Ks

R
at
io
 v
s.
 A
rc
h
. 1

Arch. 1 Arch. 2 Arch. 3 Arch. 4 Arch. 5 Arch. 6 Arch. 7 Arch. 8

Fig. 10: Geomean performance and area results for each archi-
tecture.

0

0.2

0.4

0.6

0.8

1

1.2

Arch. 1 Arch. 2 Arch. 3 Arch. 4 Arch. 5 Arch. 6 Arch. 7 Arch. 8

R
at
io
 v
s.
 A
rc
h
. 1

Fig. 11: Geomean area-delay product for each architecture.

• Histogram: Accumulates integers into 5 equally-sized bins.
• Line of Sight: uses the Bresenhams line algorithm [3] to

determine whether each pixel is visible from the source.
• Mandelbrot: An iterative mathematical benchmark which

generates a fractal image.
• Matrix Multiply: matrix multiplication of two arrays.
• MCML: Adopted from the Oregon Medical Laser Cen-

tre [24], it simulates light propagation from a point source
in an infinite medium with isotropic scattering.

• Mutex: An accumulation benchmark which uses a lock.
• Vector Add: Performs vector addition of two arrays.

Other than the Mutex benchmark, Barrier and MCML bench-
marks also use Pthread locks. Each benchmark was synthe-
sized, placed and routed into the Altera Stratix V FPGA
(5SGSMD8K1F40C2) with Quartus 15.0.

B. Results

Table I shows the geometric mean results across all bench-
marks for Arch. 1, and Fig. 10 shows the geometric mean
results for each architecture relative to Arch. 1. There are three
performance metrics (total wall-clock time (# cycles ◊ clock
period), total number of clock cycles and Fmax of the circuit)
and three area metrics (logic utilization, DSP blocks, and M20K
blocks). The logic utilization metric reported by Altera Quartus
II is an estimate of how full the device is, calculated from the
number of ALMs (adaptive logic modules) used in the design.
M20Ks are Altera’s on-chip RAMs that can each hold up to 20
Kbits of data.

The general trend is that, as we progress from Arch. 1,

Time Execution Cycles Fmax Logic Util. DSPs M20Ks
262.86 45562.53 173.34 3727.72 11.03 39.38

TABLE I: Geomean baseline results (Arch. 1).

towards the Arch. 8, results improve in terms of both perfor-
mance and logic utilization. Comparing Arch. 1 and 2, both logic
utilization and Fmax improve slightly, owing to the previously
described efficiency of the flat topology vs. the nested topology.
With the Fmax improvement, geomean wall-clock time improves
by 4.7%. With divider sharing in Arch. 3, logic utilization and
M20K usage drop. Altera’s divider cores use M20Ks within, thus
memories are also saved in sharing dividers. There is virtually
no impact on execution cycles (0.1% increase). This is because
in our system, threads are started in a staggered manner (i.e. one
after another), and dividers are pipelined (to the depth equal
to the operand’s bitwidth). Thus, when sharing dividers across
threads, stalls caused by divider contention among threads are
minimal. When sharing multipliers in Arch. 4, DSP usage drops
as expected, and execution cycles are again affected minimally.
Logic utilization does increase, however, due to multiplexers
required on the inputs of the multipliers. In Arch. 3, logic uti-
lization decreased when sharing dividers only, since the decrease
from sharing dividers exceeds the increase from the added input
multiplexers. Performance significantly improves in Arch. 5, ow-
ing to the local and shared-local memories. Compared to Arch. 4,
execution cycles and total execution time improve by 14.3%
and 32.6%, respectively. The local/shared-local memories also
shrink the expensive multiplexers in the global memory controller
(as described in Section V-B), improving logic utilization and
Fmax by 11.1% and 27.3%, respectively. M20K usage drops
with local memories, since Quartus is able to perform more
optimizations, such as reducing a RAM block to registers, when
memories directly connected to the data-path. When RAMs are
created inside the global memory controller, behind multiplexers,
Quartus is not able to perform such optimizations. However,
Quartus cannot automatically convert all small memories to
registers, which we handle in Arch. 6.

With memory-to-register conversion, M20K usage decreases
by 34.1% from Arch. 5, and logic utilization decreases by 7.1%.
We also reduce the memory-load latencies to 1 clock cycle for
local/shared-local memories and to 0 clock cycles for memories
converted to registers. This improves both execution cycles and
wall-clock time by an additional 5.7%, compared to Arch. 5. In
Arch. 7, we localize ROMs to each thread through replication to
reduce memory contention between threads. With this, execution
cycles and total execution time improve by 5.7% and 3.6%
respectively, relative to Arch. 6. M20K usage increases, however,
by 1.97◊ due to replication. In Arch. 8, we disable multiplier
sharing across threads, as the input multiplexers can increase
circuit area and lower Fmax. The execution cycles improves
minimally, and the logic utilization improves by 10%, compared
to Arch. 7. As expected, DSP usage also increases significantly
by 2◊. Overall, Arch. 8 yields the best performance and logic
utilization results out of all architectures, with an improvement
of 41.6% (wall-clock time) and 38.3% (logic utililization), com-
pared to Arch. 1.

Area-delay product is a well-known metric to gauge circuit
efficiency. However, modern FPGAs contain different types of
blocks, which include logic blocks, memory blocks, DSP blocks,
and routing, each of which consumes a different amount of area
on the FPGA. To account for the different types, we use the
area data from [10], which gives the chip tile area for each type
of block5. With the total area accounting for the different types
of blocks, we multiply this with wall-clock time to obtain the

5Although [10] provides detailed area data for the types of blocks in Stratix III.
Stratix V contains similar types of blocks, so we believe the data can be used
for this relative area comparison. We calculate the M20K area from the given
M9K area by using the relative memory capacity ratio.

area-delay product for each architecture.

Fig. 11 shows the geometric mean area-delay product for
each architecture. As seen in the figure, the area-delay product
improves from Arch. 1 up to Arch. 6, at which points it starts
to become worse. This is because the performance generally
improves up to Arch. 6, with the area also significantly reduced
by sharing functional units, reducing multiplexing logic, and
converting RAMs to registers. From Arch. 7, the performance
continues to improve slightly, however, area is increased sig-
nificantly when replicating memories in Arch. 7 and disabling
multiplier sharing in Arch. 8. Overall, Arch. 6 shows the best
area-delay product, with an improvement of 63.3% over Arch. 1.

Overall, we observed that local/shared-local memories and
memory-to-register conversion, together with reduced access
latencies, significantly improve performance and area. Constant
memory replication also helps to reduce memory contention
further, but degrades area-delay product. Sharing functional units
across threads had little impact on performance degradation,
while producing considerable area savings. This is because
threads are invoked at different clock cycles, making them
slightly “out-of-step” with one another, thereby reducing con-
tention.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed the impact of two circuit topolo-
gies with different memory management techniques on the
performance and area of parallel HLS-generated hardware. We
considered the nested topology, where hardware modules are
instantiated in a hierarchical manner, and the flat topology, other
where modules are instantiated at the same level of hierarchy.
The flat architecture enables greater sharing of hardware modules
and functional units. We described a system generator, inte-
grated within HLS, to automatically create efficient interconnect
between hardware modules, with the ability to share/replicate
functions, functional units, memories between functions/threads,
as well as inserting deadlock-prevention modules for parallel
operating hardware. Three different memory architectures were
also investigated: the global memory controller, and local/shared-
local memories. The global memory controller handles memory
accesses that are not amenable to points-to analysis. Local and
shared-local memories improve memory bandwidth by providing
concurrent direct memory accesses, and decrease area by reduc-
ing the multiplexing logic. Additional memory management tech-
niques, memory replication and memory-to-register conversion,
were explored to reduce memory contention between threads and
also to reduce memory usage and latency.

In geomean results, the flat circuit topology with local/shared-
local memories, divider sharing, memory-to-register conversion,
and replication of constant memories (Arch. 8) yielded the best
result with 41.6% and 38.3% improvement in wall-clock time and
logic utilization, respectively, relative to the baseline. Replication
of constant memories and multipliers increased area, thus the
best area-delay product was observed with Arch. 6, which
used the flat circuit topology with local/shared-local memories,
divider/multiplier sharing, and memory-to-register conversion,
offering an improvement of 63.3% vs. the baseline.

For future work, we would like examine the proposed tech-
niques in a scenario where the HLS of threads is combined
with function pipelining; i.e. wherein parallel threads execute
in concurrent pipelined hardware modules.

REFERENCES

[1] Algorithm and Programing. Box Filtering. (http://tech-
algorithm.com/articles/boxfiltering/).

[2] L. O. Andersen. Program analysis and specialization for the c programming
language. In Ph.D. Thesis. University of Cophenhagen, 1994.

[3] J. Bresenham. Algorithm for computer control of a digital plotter. IBM
Systems Journal, 4, 1965.

[4] A. Canis, S.D. Brown, and J.H. Anderson. Modulo SDC scheduling with
recurrence minimization in high-level synthesis. In IEEE FPL, pages 1–8,
Sept. 2014.

[5] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J.H. Anderson,
S.D. Brown, and T. Czajkowski. LegUp: high-level synthesis for FPGA-
based processor/accelerator systems. In ACM/SIGDA FPGA, pages 33–36,
2011.

[6] J. Choi, S. Brown, and J. Anderson. From software threads to parallel
hardware in high-level synthesis for fpgas. In IEEE FPT, pages 270–277,
December 2013.

[7] J. Cong and W. Jiang. Pattern-based behavior synthesis for fpga resource
reduction. In ACM/SIGDA FPGA, pages 107–116, 2008.

[8] S. Dai, M. Tan, K. Hao, and Z. Zhang. Flushing-enabled loop pipelining
for high-level synthesis. In DAC, pages 1–6, San Francisco, CA, June 2014.

[9] D. Cabrera et. al. OpenMP extensions for FPGA accelerators. In IEEE
Systems, Architecture, Modeling and Simulation (SAMOS), pages 17–24,
2009.

[10] H. Wong et. al. Comparing FPGA vs. custom cmos and the impact on
processor microarchitecture. In ACM Int’l Symnp. on FPGAs, pages 5–14,
2011.

[11] Y.Y Leow et. al. Generating hardware from OpenMP programs. In IEEE
FPT, pages 73–80, 2006.

[12] G. Q. Silva, https://code.google.com/p/addrleaks/. Static Detection of
Address Leaks., 2013.

[13] S. Hadjis, A. Canis, J.H. Anderson, J. Choi, K. Nam, S.D. Brown, and
T. Czajkowski. Impact of FPGA architecture on resource sharing in high-
level synthesis. In ACM/SIGDA FPGA, pages 111–114, 2012.

[14] Robert J. Halstead and Walid Najjar. Compiled multithreaded data paths
on fpgas for dynamic workloads. In IEEE Compilers, Architectures and
Synthesis for Embedded Systems, 2013.

[15] Y. Hara, H. Tomiyama, S. Honda, and H. Takada. Proposal and quantitative
analysis of the CHStone benchmark program suite for practical C-based
high-level synthesis. Journal of Information Processing, 17:242–254, 2009.

[16] Ben Hardekopf and Calvin Lin. The ant and the grasshopper: fast and
accurate pointer analysis for millions of lines of code. In ACM SIGPLAN
Programming language design and implementation, pages 290–299, 2007.

[17] http://llvm.org/docs/Passes.html. LLVMs Analysis and Transform Passes,
2015.

[18] http://www.altera.com/products/software/ opencl/opencl-index.html.
OpenCL for Altera FPGAs, 2013.

[19] http://www.xilinx.com/products/design tools/vivado/vivado-webpack.htm.
Xilinx: Vivado Design Suite, 2013.

[20] http://www.xilinx.com/publications/archives/xcell/Xcell86.pdf. Xilinx:
Xcell Journal, Issue 86, 2014.

[21] D. Ku and G. D. Micheli. High Level Synthesis of ASICs under Timing
and Synchronization Constraints. Kluwer Academic Publishers, Norwell,
MA, 1992.

[22] Peng Li, Peng Zhang, Louis-Noel Pouchet, and Jason Cong. Resource-
aware throughput optimization for high-level synthesis. In ACM/SIGDA
FPGA, pages 200–209, 2015.

[23] A. Morvan, S. Derrien, and P. Quinton. Efficient nested loop pipelining
in high level synthesis using polyhedral bubble insertion. In IEEE FPT,
pages 1–10, Dec. 2011.

[24] Oregon Medical Laser Center. Monte Carlo Simulations.
(http://omlc.ogi.edu/software/mc/).

[25] L. Semeria and G. De Micheli. Spc: synthesis of pointers in c application of
pointer analysis to the behavioral synthesis from c. In IEEE/ACM ICCAD
98. Digest of Technical Papers., pages 340–346, November 1998.

[26] B. Steensgaard. Points-to analysis in almost linear time. In ACM SIGPLAN-
SIGACT Symposium on Principles of programming languages, pages 32–41,
1996.

[27] G. Stitt and F. Vahid. Thread warping: a framework for dynamic synthesis
of thread accelerators. In IEEE/ACM CODES+ISSS, pages 93–98, 2007.

[28] Mingxing Tan, Bin Liu, Steve Dai, and Zhiru Zhang. Multithreaded pipeline
synthesis for data-parallel kernels. ICCAD, 2014.

[29] T. Yuki, A. Morvan, and S. Derrien. Derivation of efficient fsm from loop
nests. In IEEE FPT, pages 286–293, Kyoto, Japan, December 2013.

