
Design Re-Use for Compile Time Reduction in
FPGA High-Level Synthesis Flows

Marcel Gort, Jason Anderson
ECE Department, University of Toronto, Toronto, ON, Canada

[gortmarc,janders]@eecg.toronto.edu

Abstract—High-level synthesis (HLS) raises the level of ab-
straction for hardware design through the use of software
methodologies. An impediment to productivity in HLS flows,
however, is the run-time of the back-end toolflow – synthesis,
packing, placement and routing – which can take hours or days
for the largest designs. We propose a new back-end flow for
HLS that makes use of pre-synthesized and placed “macros”
for portions of the design, thereby reducing the amount of
work to be done by the back-end tools, lowering run-time. A
key aspect of our work is an analytical placement algorithm
capable of handling large macros whose internal blocks have fixed
relative placements, in conjunction with placing the surrounding
individual logic blocks. In an experimental study, we consider
the impact on run-time and quality-of-results of using macros:
1) in synthesis alone, and 2) in synthesis, packing and placement.
Results show that the proposed approach reduces run-time by
∼3×, on average, with a negative performance impact of ∼5%.

I. INTRODUCTION

Field-programmable gate arrays (FPGAs) are increasingly
being used to implement custom accelerators to raise compu-
tational throughput and energy efficiency. For certain appli-
cations, the performance advantages (in power and/or speed)
of using FPGAs to realize accelerators can be significant and
exceed GPUs and multicore processors [4], [5], [1], [16]. There
are two impediments, however, to the widespread adoption of
FPGAs as computing platforms: 1) they require hardware ex-
pertise and the use of hardware description languages (HDLs),
which make them difficult to use for software engineers, and
2) the run-time of FPGA tools is too long, taking hours or
days for the largest designs, which is mainly due to the tools
implementing a design from scratch at the individual bit/wire
level. In this paper, we propose an approach to mitigate the
second impediment, in the context of recent progress on the
first impediment, namely, high-level synthesis (HLS).

HLS raises the level of abstraction for hardware design by
allowing software methodologies to be used, thereby improv-
ing the “design difficulty” challenge. HLS technologies are of
interest to two types of designers: 1) hardware engineers who
use HLS to improve productivity, and 2) software engineers
who possess no hardware skills yet wish to gain some of
the performance benefits of hardware. Software engineers
outnumber hardware engineers by 10× [15] and consequently,
the potential user base of FPGAs would be greatly expanded if
HLS flows were to gain widespread acceptance in the FPGA
community. Software engineers, however, are accustomed to
compile times of seconds or minutes.

In this paper, we propose to reduce tool run-time through
the use of pre-synthesized and placed “chunks” of the design,
which we refer to as macros. Our approach is particularly
suited to HLS, where few if any HW details are specified
in the source code and the HLS tool is free to choose the

HW implementation. In essence, with our methodology, the
work required by back-end synthesis, placement and routing
is reduced considerably, as a large fraction of work is replaced
with “instantiation and stitch” of macros from a library. This
is analogous to the use of pre-compiled libraries in software
development: a user does not recompile the stdio library for
every program; rather, they simply link it into their binary.

We explore macros with various granularities, ranging from
the size of basic blocks in the program’s control-dataflow graph
to entire C functions. Macros limit the ability of back-end
CAD tools to optimize the design globally, the effect of which
we evaluate on both synthesis and placement. With the use
of macros, new placement challenges arise, specifically, the
need to handle large macros with a fixed placement footprint
alongside individual logic blocks – the so-called “macros
and dust” placement problem [13]. We evaluate a number of
solutions to this problem using a recently developed analytical
placer [7]. In an experimental study of benchmarks with
multiple macros, we assess the impact of using macros on
quality-of-result (QoR) and run-time. Results show that, on
average, the run-time of the entire back-end toolflow can be
reduced by almost 3×, at a cost of 5% worse performance
(due to the restricted ability of the back-end tools to optimize
the design across macro boundaries). The proposed flow should
interest users who do not need highest-achievable performance,
but who are seeking fast turnaround time for design iterations.

II. RELATED WORK

Recent work [11], [10] presents a placer that handles large
macro blocks, which when combined with a fast router, offers
30−40× speedup to the entire CAD flow at the cost of 2−3×
higher critical path delay. While the speedup is commendable,
decreasing circuit performance by 2−4× is likely unacceptable
for most FPGA users. Our macros do not include routing
information, which limits the whole-flow speed-up, though the
circuit performance is only degraded by 5%, on average.

In [14], Tessier presents an approach that breaks the
placement problem into several steps, each of which is a type
of clustering. The input to the flow is a set of macroblocks,
which are pre-placed groups of logic blocks. Each of these
macroblocks implements the function of a library element in
the RAW benchmark suite [2]. Input circuits are created as
networks of these library elements, which become networks
of macroblocks. These macroblocks are first clustered together,
then placed into physical partitions of the FPGA using a shape-
filling algorithm. Tessier compares the results produced by
his tool with the results produced with Xilinx PAR2.1 by
connecting his tool with the Xilinx router. He achieves a
reduction in placement time of 17×, and a total place and route
run-time reduction of 2.6×. Additionally, his tool improves



circuit speed by 7%. While Tessier presents an approach
tailored to networks of macros, without any dust (glue logic),
our approach targets general purpose hardware, generated with
HLS tools.

A. High-Level Synthesis

We implemented much of our work in the LegUp open-
source HLS framework from the University of Toronto [3].
LegUp is implemented within the LLVM compiler frame-
work [12]. With LegUp, a C program is translated
into LLVM’s intermediate representation (IR), comprising
machine-independent assembly code. HLS is performed on the
optimized IR, scheduling instructions into states, producing a
finite state machine (FSM), and ultimately outputting Verilog
RTL code. Much of our work is implemented in the Verilog-
generation stage of LegUp, where we altered the tool to create
“holes” in the design for later macro insertion.

B. HeAP Analytical Placer

HeAP is a recently published analytical placer for FP-
GAs [7] that is capable of targeting Altera Cyclone II devices.
We adapted it for the mixed-size placement problem (to be
discussed below). The basic flow of HeAP is as follows:
the placement problem is formulated mathematically as a
linear system of equations to be solved. Solving the system
provides a real-valued placement position for each block in the
design, with overaps between blocks. This is referred to as the
solved placement. HeAP then legalizes the solved placement
to produce a spread placement. Legalization is done using a
recursive bipartitioning approach, attempting to keep blocks
close to their solved locations. The spread location for every
block is then used to create an “anchor” for the block (which
is a pseudo connection from the block to the location). The
purpose of the anchors is such that, with repeated iterations
of solving and spreading, blocks will tend to get closer to
their spread locations – a legal overlap-free placement. The
interested reader is referred to [7] for complete details.

III. MACRO DETECTION AND GENERATION

We use the term macroize to refer to the use of a pre-
synthesized/placed macro to implement a piece of C code, as
opposed to letting HLS produce its own HW implementation.
We determined the sections of code that were to be macroized
in two ways: automatically, from LLVM basic blocks, and
manually, from user-specified C functions.

A. Automatic Macro Detection

Given the vast amount of software that already exists,
it is likely that, in the process of creating an application,
a programmer may duplicate existing functionality, say for
example, code to find the average of integers in an array.
Using existing C-to-FPGA tool flows, however, requires the
code to be re-synthesized, re-placed, and re-routed, no matter
how many times similar code has already been compiled. If,
however, the commonly occuring code is automatically tagged
as reproducing existing functionality, a pre-compiled solution
could be used instead. We envision that eventually such pre-
compiled solutions could be located in the cloud, likely as a
vendor service. CAD tools located either on user machines or
in the cloud could search and retrieve pre-compiled solutions.

In LLVM, the averaging code referred to above would be
considered a basic block. A basic block is a piece of code
with a single entry and exit point. Typically, this piece of code
ends with a branch or return instruction. LLVM maintains a
control-flow graph, where vertices are basic blocks and edges
are entry/exit points between those basic blocks. Computations
performed by a program are located within basic blocks.

Our automatic macro detection approach considers
macroizing each basic block in a given benchmark. For each
basic block, we use a pre-synthesized and placed solution that
we pre-generate in advance and deposit in a library. We then
evaluate the potential benefits and drawbacks of that solution.

B. Explicit Macro Instantiation

While automatic macro detection and instantiation is con-
venient from a user point of view, this approach may be
limited by the complexity of macros that can be automatically
detected. If a user has written a function with a substantial
amount of code, it is unlikely that the code will be sufficiently
similar to an existing implementation to automatically find a
functionally equivalent match. If, however, a user explicitly
uses a function from a library of pre-compiled macros, the
association can easily be made.

To explore the benefits of having a library of pre-compiled
macros, we looked through the CHStone [8] benchmarks for
functions, that when compiled to HW, resulted in at least 4
Altera Cyclone II logic array blocks (LABs). We generated
pre-synthesized and pre-placed macros for these functions.
When compiling each benchmark, we selectively use the
macros, one-by-one, to determine the impact on QoR.

IV. TOOL FLOW

We employ a mixed academic/commercial tool flow that
uses components from Altera’s Quartus II tool (version 11.1),
as well as HeAP. Using HeAP, rather than Quartus II’s
placer, allows for explicit control of how macros are handled
within placement, which enables the use of different placement
strategies, and makes possible an in-depth analysis of how
placement is affected by macro choice. We target the Altera
Cyclone II FPGA. The flow is summarized in Fig. 1. It is split
into five main steps:

1) Run modified LegUp: LegUp was augmented with the
ability to generate and instantiate a Verilog module for
any basic block found in the LLVM intermediate repre-
sentation (IR). For such a basic block, two versions of
the corresponding Verilog module are created. The first
contains the LegUp-generated Verilog code that imple-
ments the functionality of that basic block. The second
is a stub, and contains no logic, but contains all the I/O
of the basic block. The top-level code generated by our
modified LegUp instantiates the stubbed version of the
macro. When this code is synthesized by Quartus II, the
non-stubbed macro remains untouched, since Quartus II
only sees the stubbed version. To prevent Quartus II from
optimizing away the stub, synthesis directives were placed
on its I/Os.

2) Add macro to library: Using Quartus II synthesis, each
basic block and each function macro was synthesized in
isolation of the surrounding code. It was then placed using
HeAP and added to the library of macros. Within HeAP,
each macro was optimized for Half-Perimeter Wirelength



Fig. 1. Macro evaluation experimental flow.

(HPWL) at the same effort level as all other placement
runs in our experiments. Nets connected to inputs and
outputs of the macro were ignored (not optimized), since,
at this point, it is unclear where they should be placed
on the periphery. Considering macro I/O placement is an
interesting area for future work.

3) Synthesize stubs and dust: The top level Verilog file was
synthesized using Quartus II, ensuring that the stubbed
versions of the macros were used. Next, a Verilog Quartus
Mapping (VQM) file was generated from the resultant
technology-mapped netlist, which has “holes” in it for
the macros. The inputs to holes are wires with no fanout,
while the outputs are driverless wires. These are later
properly connected to the non-empty macro.

4) Place macros and dust: Given a VQM file with holes in
it, the list of macros to insert into the holes, and a library
of macros, our modified version of HeAP stitches together
the VQM netlist and the macros to generate a complete
netlist, and a macros-and-dust placement problem. The
macros can be moved, but the logic blocks contained
within have fixed placement, relative to the macro origin.
The details of our macro-and-dust placement approach are
provided in Section VI-A. In the end, a legal placement
solution is generated, along with a report file that prints
the name of each net in the design, the type of net
(discussed below), and the HPWL of that net.

5) Place only dust: A baseline no-macros placement was
generated by stitching the synthesized netlist (with
“holes”) with the synthesized macro implementations.
HeAP then reads this stitched flat netlist and generates
a placement.

6) Evaluate QoR impact of using macros: To gain a
better understanding of how disabling cross-boundary
optimization affects the quality-of-results, we split the
nets in each benchmark into three categories: intra-macro

nets, inter-macro nets, and dust-to-dust nets. The intra-
macro nets are those with sources and sinks that are
entirely contained within a macro. The inter-macro nets
are those with at least one source or sink that is outside
of the macro and at least one source or sink that is inside
the macro. The dust-to-dust nets are those with no sources
or sinks that touch the macro. Intuitively, macroizing a
section of code should improve the HPWL of the intra-
macro nets since the placer can focus solely on optimizing
these nets. Conversely, the HPWL of macro-to-dust nets
should worsen, since the placer is only optimizing for
these nets after the relative placements of the logic blocks
contained within the macro have been finalized. It is not
obvious what the impact of macroizing is on dust-to-dust
connections.

We also compare the macro flow against three different
baseline flows, for a total of four different flows:

1) Flowmacros: Pre-synthesized and pre-placed solutions are
used for each macro.

2) Flowsyn macros: Macros are used in the synthesis stage,
but not in the placement stage. After synthesis finishes,
HeAP stitches the macro netlists to the main netlist and
placement is run on the new flat netlist, which no longer
contains macros. Comparing this flow to Flowmacros

reveals the impact of using macros on placement qual-
ity of results, since the flows generate the same in-
put to placement, with the only difference being that
Flowmacros uses pre-placed solutions to the macros, and
Flowsyn macros does not.

3) Flowno macros: Macros are not used. By comparing this
flow to Flowsyn macros flow, the impact of using macros
in synthesis can be isolated from the impact in placement.

4) FlowQuartus: The standard Quartus timing-driven flow
(with the Quartus placer instead of HeAP) is included for
comparison.

The functional correctness of our macro flow was veri-
fied by simulating (with ModelSim) technology-mapped-level
netlists generated by our flow. Final placement optimizations
(e.g. repacking) were turned off in Quartus when using a place-
ment generated by HeAP, which ensures that Quartus does not
modify the placement. Additionally, a timing constraint of 1
GHz was set on all clocks.

V. SINGLE-MACRO EVALUATION

To develop an understanding of how macro use impacts
quality-of-result, we considered designs that contain a single
macro. For each of the 12 CHStone benchmarks, we explore
the use of each basic block and/or each function as a pre-
compiled macro. Each of the 174 total macros are considered
in isolation of all other macros, in essence, creating 174 differ-
ent benchmark circuits, each with a single macro surrounded
by dust. To measure the impact of using a macro, the associated
circuit is compiled with and without the pre-compiled solution
for this macro.

1) Effect on Placement QoR: The impact of macroizing
a section of code on placement was isolated by comparing
Flowmacros with Flowsyn macros. In both versions, optimiz-
ing across macro boundaries in synthesis is disabled. The
macro logic is then added back into the netlist after dust
synthesis is complete.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of macro-touching nets that are inter-macro

0

0.4

0.8

1.2

1.6

2

2.4

2.8

H
P

W
L
 o

f 
in

te
r
+

in
tr

a
-m

a
c
r
o
 v

s
. 

fl
a
t

Fig. 2. Sum of the HPWL of all nets touching a macro vs. the fraction
of those nets that cross the macro boundary for macros formed from both
functions and basic blocks.

Fig. 2 shows a scatter plot, where each point represents a
comparison of the two flows for one macro. Also shown is a
line representing linear regression analysis of all data points.
On the y-axis, the figures show the sum of the HPWL of all
nets connected to the macro (i.e. intra- and inter-macro nets)
in Flowmacros relative to Flowsyn macros. On the x-axis, the
figures show the proportion of those nets that cross the macro
boundary (i.e. inter/(inter+intra)). The trend in the figure makes
intuitive sense: macros with a greater proportion of nets that
cross the macro boundary lead to worse HPWL results than
macros with a greater proportion of nets that are completely
contained within the macro. Since the logic in the macros is
optimized independently from the surrounding logic, the nets
that cross the boundaries are not well optimized. Conversely,
if very few nets cross macro boundaries, the nets connected
to the macro can be very well optimized when ignoring logic
outside the macro.

Fig. 3 is also a scatter plot, in this case showing the sum of
the HPWL of all nets not connected to a macro (dust-to-dust)
vs. the size of that macro as a fraction of the total number of
Cyclone II LABs in the design. The figure is meant to illustrate
the impact of having large macro placement blockages on the
non-macroized logic. We observe that increasing macro size
negatively affects the HPWL of dust-to-dust nets. In other
words, big macros push little logic blocks around, and end
up affecting the nets connected to those little logic blocks.
Althought not shown in the figure, we found that inter-macro
nets also tend to get worse as macro size increases. One reason
for this could be that with larger macros, it is possible for a
LAB to be far from the macro periphery, which means that
inter-macro nets needing to connect to that LAB must travel
a long way.

On average, across all 174 benchmarks each with a single
macro, the HPWL of nets completely contained within a
macro was 17% better when keeping the logic blocks in the
macro fixed, relative to the macro origin. The HPWL of nets
connected to the macro, but not completely contained within
it, was 48% worse, and the nets not at all connected to the
macro was 2% worse.

Looking to Fig. 4, each data point represents two placement
runs: one of which is the time necessary to place a benchmark
which uses one of the 174 macros, and the other of which
is the time necessary to place the same benchmark using
Flowsyn macros. The y-axis shows the Flowmacros placement
time divided by the Flowsyn macros placement time. The
x-axis shows the fraction of overall area taken up by the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Macro fraction of total number of LABs

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

D
u

s
t
-t

o
-d

u
s
t
 H

P
W

L
 r

e
la

t
iv

e
 t

o
 fl

a
t

Fig. 3. Sum of the HPWL of all nets which do not touch a macro vs. the
size of all macros.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Macro fraction of total number of LABs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P
la

c
e
m

e
n

t
 r

u
n

-t
im

e
 v

s
. 

b
a
s
e
li
n

e

Fig. 4. Placement run-time of benchmark using a macro vs. baseline placing
logic blocks across the macro boundary.

particular macro. As expected, the figure clearly shows that
placement run-time is reduced to a greater extent when a
greater proportion of a benchmark is pre-compiled in a macro.

2) Effect on Synthesis QoR: To consider the impact of
cross-boundary optimization on synthesis QoR, we com-
pared the post-placement HPWL of Flowsyn macros with
Flowno macros. In Flowno macros, Quartus II was allowed
to see the logic inside the macros during synthesis (rather
than seeing macro stubs filled with empty logic), and so it
optimized across macro boundaries. The resultant netlist was
passed to HeAP, which performed placement and reported the
resultant HPWL. This was compared to HPWL obtained in
Flowsyn macros to isolate the impact of disabling synthesis
optimizations across macro boundaries.

Fig. 5 shows the effect of using macros on synthesis QoR.
The y-axis shows the HPWL of a benchmark that uses a macro
divided by the HPWL of that same benchmark when not using
a macro. The x-axis shows the fraction of total LABs that are
in the macro. The figure shows that having a greater portion
of a circuit macroized at synthesis time will generally lead
to worse QoR, though there is more noise in this data than
in the placement data. Fig. 6 shows the synthesis run-time
(relative to Flowno macros) vs. the fraction of total LABs that
are in a macro. The figure shows that as a greater portion of
a benchmark is macroized, synthesis run-time decreases close
to linearly.

VI. MULTI-MACRO EVALUATION

Having looked at designs containing single macros, we
now move on to evaluate the case of multiple macros. We use
ten benchmarks to evaluate the effect of macroizing multiple



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Macro fraction of total number of LABs

0.8

0.9

1

1.1

1.2

1.3
T
o
t
a
l 
H

P
W

L
 v

s
. 

n
o
-m

a
c
r
o
s

Fig. 5. HPWL impact of using a macro in synthesis vs. the fraction of overall
LABs that are in a macro.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Macro fraction of total number of LABs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

S
y
n

th
e
s
is

 r
u

n
-t

im
e
 v

s
. 

b
a
s
e
li
n

e

Fig. 6. Synthesis run-time of benchmark using a macro vs. baseline of
synthesizing across the macro boundary.

sections of code. Each benchmark uses between three and
ten pre-synthesized/placed macros, chosen either from basic
blocks or from functions. All macros are composed only of
LABs. The benchmarks are as follows, with this first four
drawn from the CHStone benchmark suite (and therefore not
described in detail):

• jpeg (49566 logic cells) : 3 functions macroized.
• adpcm (26647 logic cells): 9 functions macroized.
• gsm (17964 logic cells): 10 basic blocks macroized.
• dfsin (36340 logic cells): 8 basic blocks macroized.
• Black-Scholes (45021 logic cells): Monte-Carlo-

based European-style option price estimation in fixed-
point. Four functions were macroized, chosen because
they were general-purpose enough to be included as
part of a fixed-point or financial applications library.

• mcml (21017 logic cells): Monte-Carlo modeling
of light transport in multi-layered scattering media
(MCML) models how light interacts with multi-
layered tissues in fixed-point, similar to Black-
Scholes. Five functions were macroized.

• fft (11147 logic cells): A Fast Fourier Transform
(FFT) C implementation was split into six different
calls to a “butterfly” function, each of which was
macroized.

• df (36922 logic cells): The double float (df) bench-
mark was generated by stitching together division,
exponential, and addition double-precision CHStone
floating point benchmarks.

• hash (5114 logic cells): 4 hashing functions
macroized.

• mandelbrot (21456 logic cells): Macroized four in-
stances of mandelbrot, each operating on 1/4 of the
data.

Fig. 7. Example of bad spreading that can occur with macros and dust.
Because the spreading step maintains the ordering of blocks by x or y location
provided by the solver, blocks 1 and 2 must be spread left of the macro
block and block 3 must be spread right of the macro block, leading to a bad
spreading. A better spreading is shown to the right, with blocks 1, 2, and 3
kept together.

A. Macros-and-Dust Placement

Placing big movable objects together with small movable
objects poses unique placement challenges. Simulated anneal-
ing (SA)-based placement can be used, but finding legal object
swaps becomes much more complicated when considering big
blocks, as multi-step swaps that involve many different blocks
need be considered. Additionally, swapping big blocks can
result in large cost swings and while this may be desirable
when the SA schedule is still “hot”, it will interfere with the
fine-grained tweaking that occurs during the “cold” phase.

Analytical placement (AP) approaches seem to be a better
fit for macros-and-dust placement. During the solving step, x
and y offsets into macros can be included in the formulation
so that non-macro blocks connected to a specific block within
a macro are placed close to that particular internal block.
The spreading step is already designed to legalize an initial
congested solution, so it is natural for it to spread dust
away from a big macro. The spreading step is not without
issues, however. With many big blocks of various shapes and
sizes, spreading may encounter issues more akin to those
found in floorplanning, rather than to those typically found
in placement. Also, an issue that arises is the possibility of the
spreading step perturbing the solved solution in an unusual
way. For example, dust that should ideally be placed closely
on one side of a macro could get spread to either side of a
macro, as shown in Fig. 7. This is because the spreading step
attempts to maintain the xy-order of blocks, including macros.
To overcome this issue, as well as others, we devised and
evaluated four macros-and-dust placement approaches:

1) Floorplacement: This approach was presented for the
ASIC domain in [13]. It builds upon SimPL [9] to
handle “boulders”, which are similar to our macros. We
augmented HeAP (based on SimPL) in the same way:
During the recursive bipartitioning spreading phase, when
boulders in a partition constitute a large enough fraction
of the overall area of that partition, their locations are
locked based on the results of floorplanning the big blocks
in that partition. The dust locations, however, are left un-
finalized. The boulders are then treated as obstacles for
the dust, and spreading continues on the dust.

2) Fix macros every second solve step: When placing
macros with dust, the locations of the dust can be sig-
nificantly perturbed by slight changes in the xy-block
ordering from the solver, since this can cause the dust to
be placed on one side or another of a large macro, as in
in Fig. 7. We minimize the perturbations experienced by
the dust by only re-solving macro locations every second
iteration. For example, in iteration 1, the solver solves
for both macros and dust and spreads only the macros. In



Fig. 8. Floorplacement flow on gsm benchmark where macros are shifted
and fixed after 3 iterations. Dust is more centralized than without shifting and
fixing of macros.

iteration 2, the macros are fixed to their spread locations
and the formulation is adjusted such that, during the solv-
ing step, any dust connected to a macro is attracted to the
macro’s fixed location. Everything is then spread together.
We refer to this flow as floorplacementalternating .

3) Fix macros early: Another approach that we consid-
ered is to fix macro locations after a few AP iterations
and treat them as obstacles for the remainder of the
placement process. The macros are fixed based on the
spread locations in the first 5 iterations that resulted in
the best HPWL. Additionally, we found that reducing the
blockages presented by these macros helped to improve
overall HPWL, so the macro locations are shifted in
the direction of the closest FPGA edge, ensuring no
overlaps with other macros. The macro locations are
based on the spread locations, so a macro located in
the bottom-left corner, for example, will remain in the
bottom left corner. However, by shifting the macros, a
large unobstructed region is created in the middle of the
FPGA, where dust can be placed. Fig. 8 shows the result
of using this flow on the gsm benchmark. The macros are
generally forced to the corners, while the dust is generally
in large unobstructed regions. We refer to this flow as
floorplacementfixed macros.

4) Place macros and dust separately: The placement area
is partitioned into macro space and dust space. The
macros are first floorplanned into one partition, and the
dust is then placed into the other partition. While this
improves the QoR of the connections between dust,
connections between macros and dust are difficult to
minimize. We refer to this flow as partitioned.

Further details on the placement approaches could not be
included owing to space limitations. The interested reader is
referred to [6] for complete details.

We compared the four placement approaches using the
set of 10 benchmarks and the resultant HPWL for the three
different classes of nets were compared. Additionally, the run-
time and HPWL relative to Flowsyn macros was analyzed.

Fig. 9 shows the Flowmacros HPWL for each of the
four placer flows described above, in addition to the HPWL
for Flowsyn macros. The difference between each of the
four flows and the baseline Flowsyn macros represents

dfsin
gsm adpcm

jpeg
Black-Scholes

mcml
fft df hash

mandelbrot

average

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

H
P

W
L
 v

s
. 

s
y
n

_
m

a
c
ro

s

dust-to-dust
inter-macro
intra-macro

Fig. 9. HPWL of five flows separated into net categories. For each benchmark,
a bar is shown for each flow, which are, from left to right: floorplacement,
floorplacementalternating ,floorplacementfixed macros,
partitioned, and Flowsyn macros.

the impact of using macros on placement QoR, without
considering synthesis QoR, since the technology-mapped
netlists that are used as input to placement are the same
for all flows. HPWL is shown on the y-axis relative to
the baseline Flowsyn macros HPWL. A value greater than
1 represents a worsening of HPWL vs. the baseline. For
each benchmark, five bars are shown, which represent,
from left-to-right, the following flows: floorplacement,
floorplacementalternating , floorplacementfixed macros,
partitioned, and Flowsyn macros. The right-most set of bars
gives the average. Each bar is split into three components:
the HPWL of nets not completely contained within one
macro (labeled “inter-macro”), the HPWL of nets completely
contained within one macro (labeled “intra-macro”), and the
nets that do not touch any macros (labeled “dust-to-dust”).
Note that for the Black-Scholes benchmark, using the
partitioned flow led to an impossible placement, because the
area necessary to floorplan the macros did not leave enough
room to place the dust in the other partition.

The best macro flow is floorplacementfixed macros,
which includes the methods in floorplacementalternating ,
and results in a 9.9% improvement, on average, for the inter-
macro nets and a 12.3% improvement, on average, for the
dust-to-dust nets for an overall HPWL improvement of 6.1%
vs. floorplacement, on average.

Fig. 10 shows the run-time speed-up for each of the
four flows (normalized to Flowsyn macros). The figure shows
that speed-ups vary greatly based on the benchmark, each
of which has a different proportion of overall logic pre-
compiled in macros (the jpeg benchmark, for example, has
95.8% of its LABs in macros). Considering the macros and
dust together throughout every iteration (floorplacement
flow) slows down the placement by approximately 2× vs. the
partitioning flow which considers macros and dust separately.
Alternating solving for macros and everything else speeds
the macros-and-dust placement slightly, since considering only
macros in placement is faster than considering everything.
Fixing the macros in an early iteration significantly speeds
up the placement, since macro placement only has to be per-
formed for a few early iterations. The overall average speed-up
compared to Flowsyn macros is 4.9× for the floorplacement



dfsin
gsm

adpcm

jpeg
Black-Scholes

mcml

fft df hash
mandelbrot

average

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90
P

la
c
e
m

e
n

t 
S

p
e
e
d

u
p

floorplacement
floorplacement_alter
floorplacement_fixed
partitioned

Fig. 10. Runtime speed-up of four flows relative to baseline. For each
benchmark, a bar is shown for each flow, which are, from left to right:
floorplacement, floorplacementalternating , floorplacementfixed,
and partitioned.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of LABs in Macros

1

10

100

P
la

c
e
m

e
n

t 
S

p
e
e
d

-u
p

Placement speed-up
Linear run-time scaling

Fig. 11. Placement speed-up for each benchmark vs. the fraction of LABs
that are in macros.

flow, 5.8× for the floorplacementalternating flow, 9.3×
for the floorplacementfixed macros flow, and 9.6× for the
partitioned flow.

B. Macro Flow Evaluation

Using the floorplacementfixed macros flow described
above, we examine the trade-off between QoR and run-time for
the 10 benchmarks. Fig. 11 shows the placement speed-up for
each of the 10 benchmarks vs. the fraction of LABs that are in
macros. Also shown in this figure is a trend line corresponding
to a run-time that scales linearly with the number of LABs
not in macros. Observe that run-time grows at a greater than
linear rate with number of LABs not in macros, which is a
symptom of the worse-than-O(n) computational complexity of
placement. Fig. 12 shows a similar plot for synthesis speed-up.

Fig. 13 shows the QoR and run-time of Flowmacros for
all 10 benchmarks relative to Flowno macros, which uses no
macros in either synthesis or placement. The QoR metrics used
are routed wirelength (not HPWL) and Fmax, which were
obtained from Quartus II report files. The run-time represents
whole-flow run-time, which means synthesis, placement, and

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of LABs in Macros

1

10

100

S
y
n

th
e
s
is

 S
p

e
e
d

-u
p

Synthesis speed-up
Linear run-time scaling

Fig. 12. Synthesis speed-up for each benchmark vs. the fraction of LABs
that are in macros.

dfsin
gsm

adpcm
jpeg

Black-Scholes

mcml
fft df hash

mandelbrot

geomean

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

R
e
la

ti
v
e
 t

o
 B

a
s
e
li
n

e

Whole Flow Run-time
Fmax
Wirelength

Fig. 13. Whole-flow run-time, post-routing wirelength, and post-routing
Fmax for 10 benchmarks, relative to the baseline using no macros. Also
shown is the geometric mean across the benchmarks using macros relative to
the geometric mean across benchmarks not using macros.

routing. The geometric mean across the benchmarks using
macros shows that run-time is reduced to 35% of its original
value (2.9× speed-up) at the cost of 5% worse Fmax and 11%
worse wirelength. The best case is the “DF” benchmark, which
experiences a 9.9× whole-flow speed-up with 1.2% better
Fmax and 6.1% better wirelength. The worst case is the GSM
benchmark, which experiences no speed-up (1.01×) at the cost
of 9.3% worse Fmax and 35% worse wirelength. Note that
while the macro flow causes a speed-up to both synthesis and
placement, it actually causes a slow-down to router run-time,
which is taken into account in the speed-ups reported above.
The router slow-down occurs because the placements that are
generated by our macro flow are generally worse than those
generated by the flat flow. Worse placements mean that longer
routes must be taken for source-sink connections. This causes
the router to explore a larger part of the routing resource graph
and increases routing congestion.

Table I shows the complete results for the macros flow
vs. three baselines: Flowno macros, Flowsyn macros, and the
regular timing-driven Quartus flow (no HeAP) with default ef-
fort options. Note that the “syn run-time” column for the Quar-
tus II flow is also the synthesis run-time for Flowno macros

and the “syn run-time” column for Flowsyn macros is also the
synthesis run-time for Flowmacros.

The table shows that of the 5% Fmax and 11% wirelength



TABLE I. MULTI-MACRO QOR AND RUN-TIME RESULTS.

Quartus II no macros syn macros macros
Benchmark syn place route total Fmax WL place route total Fmax WL syn place route total Fmax WL place route total Fmax WL

run-time run-time run-time run-time run-time run-time run-time run-time run-time run-time run-time run-time run-time run-time
DFSIN 233 33 31 297 18 395 7.5 27 268 15 384 148 7.6 40 195.6 16 379 2.1 43 193 14 403

GSM 341 13 15 369 54 202 3 12 356 47 182 323 2.4 25 350.4 44 239 1 28 352 43 246
ADPCM 398 28 22 448 45 295 5.4 19 422 41 281 364 4 37 405 38 318 3.3 40 407 35 337

JPEG 589 51 56 696 21 466 11.7 43 644 18 475 13 10.2 63 86.2 18 528 0.2 56 69 18 522
Black-Scholes 276 171 53 500 19 341 9.8 42 328 17 369 23 9.1 43 75.1 14 407 0.5 42 66 13 406

MCML 178 17 18 213 37 221 3.5 15 196 36 194 23 2.7 27 52.7 38 212 0.4 27 50 39 209
FFT 68 6 8 82 47 98 1.7 6 76 41 96 47 1.3 13 61.3 44 109 0.6 13 61 44 114
DF 430 42 33 505 42 390 8.2 27 465 37 385 7 7 41 55 36 351 0.2 40 47 38 362

Hash 28 3 3 34 34 41 0.8 3 32 33 44 7 0.5 5 12.5 26 46 0.1 5 12 27 49
Mandelbrot 109 15 17 141 42 212 3.8 15 128 42 199 6 3.2 27 36.2 42 201 0.1 24 30 42 198

geomean 196 21 19 243 34 221 4.3 16 218 30 215 33 3.5 27 82 29 233 0.5 27 76 29 238

vs Quartus 5.0x 1.2x 1.1x 91% 98% 5.9x 6.1x 0.7x 3.0x 87% 105% 46.9x 0.7x 3.2x 86% 108%
vs no macros 5.9x 1.2x 0.6x 2.6x 96% 108% 9.3x 0.6x 2.9x 95% 111%

vs syn macros 7.6x 1.0x 1.1x 99% 103%

degradation that occurs as a result of using macros, very
little occurs as a result of degradation in the placement step
(1% Fmax and 3% wirelength degradation), which means
that the main source of quality degradation is in synthesis.
The table also shows that for these benchmarks, synthesis
dominates total CAD time, which is an unexpected result, as
conventional wisdom is that placement and routing are the
most run-time intensive steps. This points to a potential area
of future research, which is how circuit structures produced by
HLS affect CAD run-time, or how synthesis can be tuned to
handle the circuit structures produced by HLS. Finally, when
examining placement vs routing run-time, the latter dominates
when using macros in placement, which means that to get
significantly lower whole-flow run-times, macros must also
include pre-routed signals.

Comparing with Quartus II, we observe a whole-flow
speed-up of 3.2×, with 8% higher routed wirelength and 14%
worse Fmax. The results are encouraging in that they illustrate
significant run-time speed-ups are possible relative to highly
tuned commercial tools, for a modest QoR hit. Moreover, note
that the comparison with Quartus is not entirely “apples-to-
apples” as the Quartus placer is timing-driven, whereas HeAP
is only wirelength driven. Thus, we expect some of the speed-
performance loss can be recovered.

Overall, compared to both a completely commercial
toolflow, as well as a hybrid commercial/academic flow that
incorporates the HeAP placer, the proposed macro flow offers
whole-flow run-time speed-ups of roughly 3× with a relatively
small performance degradation in the 5-14% range, on average.
We expect that our “library-assisted” compilation strategy will
be of interest both to improve engineering productivity, and to
enable a move to software-like compile times in HLS flows.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach to reduce synthesis
and placement run-times by making use of a library of pre-
compiled macros, accessed in high-level synthesis. Through
the use of macros, a significant fraction of the back-end
tool work is replaced by the instantiation-and-stitch of pre-
compiled solutions. We showed that run-time speed-ups were
superlinear with respect to the fraction of logic in macros.
The QoR impact of using macros varied significantly – using
macros with a large amount of internal connectivity and a small
amount of external connectivity led to the best QoR. Overall,
comparing the whole-flow run-time of the proposed library-
based macro methodology vs. Quartus II, we observed 3.2×

speed-up for 14% performance loss, on average. Comparing
whole-flow run-time vs. a flat flow that uses the HeAP analyt-
ical placer (and Quartus for the remaining flow steps), we see
2.9× speed-up with 5% performance loss, on average.

Future work includes handling heterogeneous macros
(comprising blocks other than LABs), support for macros with
fixed routing, and enhancing HeAP to be timing-driven.

REFERENCES

[1] 40Gbit AES Encryption using OpenCL and FPGAs.
http://www.nallatech.com/Technical-Library/white-papers.html.

[2] J. Babb and et al. The RAW benchmark suite: Computation structures
for general purpose computing. In IEEE FCCM, 1997.

[3] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. Anderson,
S. Brown, and T. Czajkowski. LegUp: high-level synthesis for FPGA-
based processor/accelerator systems. In ACM/SIGDA International
Symposium on FPGAs, pages 33–36, 2011.

[4] D. Chen and D. Singh. Using OpenCL to evaluate the efficiency of
CPUs, GPUs and FPGAs for information filtering. In FPL, pages 5–
12, 2012.

[5] D. Chen and D. Singh. Fractal video compression in OpenCL: An
evaluation of CPUs, GPUs, and FPGAs as acceleration platforms. In
ACM/IEEE ASP-DAC, pages 297–304, 2013.

[6] Removed for blind review (PhD thesis).
[7] M. Gort and J. Anderson. Analytical placement for heterogeneous

FPGAs. In FPL, pages 143–150, 2012.
[8] Y. Hara, H. Tomiyama, S. Honda, and H. Takada. Proposal and

quantitative analysis of the CHStone benchmark program suite for prac-
tical C-based high-level synthesis. Journal of Information Processing,
17(0):242 – 254, 2009.

[9] M.-C. Kim, D. Lee, and I. Markov. SimPL: An effective placement
algorithm. IEEE Transactions on Computer Aided Design of Integrated
Circuits and Systems (TCAD), 31(1):50–60, 2012.

[10] C. Lavin, B. Nelson, and B. Hutchings. The impact of hard macro size
on FPGA clock rate and place/route time. In FPL, 2013.

[11] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and
B. Hutchings. HMFlow: Accelerating FPGA compilation with hard
macros for rapid prototyping. In IEEE FCCM, pages 117–124, 2011.

[12] LLVM. The LLVM Compiler Infrastructure Project
(http://www.llvm.org), 2010.

[13] J. A. Roy, S. N. Adya, D. A. Papa, and I. L. Markov. Min-cut
floorplacement. IEEE Trans. on CAD, 25(7):1313–1326, July 2006.

[14] R. Tessier. Fast placement approaches for FPGAs. ACM Transactions
on Design Automation of Electronic Systems (TODAES), 7(2):284–305,
2002.

[15] United States Bureau of Labor Statistics. Occupational Outlook
Handbook 2010-2011 Edition, 2010.

[16] S. Weston, J. Spooner, S. Racaniere, and O. Mencer. Rapid computation
of value and risk for derivatives portfolios. Journal of Concurrency and
Computation: Practice and Experience, 24(8):880–894, 2012.


