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ABSTRACT

As power becomes an ever more important design considera-
tion, there is a need for accurate power models at all stages
of the design process. While power models are available
for CPUs and GPUs, only simple models are available for
heterogeneous processors. We present a micro-benchmark-
based modeling technique that can be used for chip multi-
processor (CMPs) and accelerated processing units (APUs).
We use our approach to model power on an Intel Xeon CPU
and an AMD Fusion heterogeneous processor. The resulting
error rate for the Xeon’s model is below 3% and is only 7%
for the Fusion. We also present a method to reduce the num-
ber of benchmarks required to create these models. Instead
of running micro-benchmarks for every combination of fac-
tors (e.g. different operations or memory access patterns),
we cluster similar micro-benchmarks to avoid unnecessary
simulations. We show that it is possible to eliminate as
many as 93% of the compute micro-benchmarks, while still
producing power models having less than 10% error rate.

Categories and Subject Descriptors

C.1.3 [Processor Architectures|: Heterogeneous (hybrid)
systems; 1.3.1 [Computer Graphics]: Hardware Architec-
ture; 1.6.5 [Simulation and modeling]: Modeling method-
ologies

General Terms
Experimentation, Measurement, Performance

Keywords

Power modeling, Benchmarking, Statistical analysis

1. INTRODUCTION

Modern processors have hit a power density limit, which has
stalled increases in clock frequencies, led to the emergence
of heterogeneous processors, and raised the importance of
power in computer architecture [1]. For architects to be able
to give power the attention it deserves, they need to be able
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to evaluate power throughout the design process. This work
presents bottom-up power models for an Intel Xeon CPU
and an AMD Fusion APU — the first such model for a hetero-
geneous processor. The APU model takes into account the
power consumption of the CPU, GPU, and shared resources.
The proposed models are built using power measurements of
real hardware, performance information from the Multi2Sim
simulator [2], and hardware performance monitoring coun-
ters (PMCs).

Bottom-up modeling makes use of micro-benchmarks to find
the link between power consumption and specific compo-
nents of a processor. For an accurate model, we want these
components to be used in as wide a range of conditions
as possible, leading to large numbers of micro-benchmarks.
Since we use not only hardware measurements, but also sim-
ulation, the number of micro-benchmarks is an impediment
to rapid power model development. To reduce the amount
of simulation time required, we present a methodology that
can determine, based on power measurements, which micro-
benchmarks are truly important for the modeling process.
We use micro-benchmark clustering based on total energy
consumption to determine which micro-benchmarks are sim-
ilar enough to others that they can be eliminated from the
modeling process.

Figure 1 shows the entire modeling process. Models are de-
veloped based on power measurements made with the setup
described in Section 3.1, as well as PMC measurements on
real hardware, described in Section 3.2, and simulating the
workloads in Multi2Sim for performance information, de-
scribed in Section 3.3. For the benchmark selection process,
the benchmark set developed in Section 4 was first used.
Modeling was also performed with reduced benchmark sets,
as described in Section 5. The modeling process itself is
described in Section 6. Finally, the different models are val-
idated and compared in Section 7.

2. ARCHITECTURE BACKGROUND

Power models were generated for two different architectures:
a CMP to demonstrate the effectiveness of the modeling
technique, and a heterogeneous processor to show that the
methodology can be extended to more complex architec-
tures. Both target architectures are described below.

2.1 Xeon CPU

The conventional CPU used in this work is the four core
Intel Xeon W3530, based on the Bloomfield architecture [3].
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Figure 1: Steps involved in the modeling process.

Table 1: Intel Xeon W3530 Specification.

Component Value
CPU cores 4
CPU architecture Bloomfield
CPU Operating Frequency 2.8 GHz

L1 I/D-cache 32 kB per core

L2 Cache 256 kB per core

L3 Cache 8 MB shared
[ Memory controller [ Triple channel DDR3 |
[TDP | 130 W |

This processor includes three levels of cache and an inte-
grated memory controller. Each core has private 32 kB L1
instruction and data caches, as well as a private 256 kB uni-
fied L2 cache. There is also an 8 MB L3 cache shared by all
four cores. The L3 is an inclusive design, meaning that any
value contained in a core’s private cache is also contained in
the L3 cache. The Xeon’s specifications are summarized in
Table 1.

2.2 Fusion APU

The heterogeneous processor used in this work is the AMD
Fusion A6-3650, a Llano APU [4] with: four CPU cores,
four GPU cores, and a shared memory controller. The CPU
is based on the family 12h [5] architecture and the GPU is
based on the Evergreen architecture [6]. The APU’s spec-
ifications are summarized in Table 2. The A6-3650’s CPU
includes two levels of cache and an integrated memory con-
troller shared with the GPU. Each core has private 64 kB
L1 instruction and data caches, as well as a private 1 MB
unified L2 cache. The caches are exclusive. The GPU in the
APU uses a very long instruction word (VLIW) instruction
set architecture. The GPU contains texture caches, but they
are cannot be used for GPGPU computation.

Table 2: AMD A6-3650 Specification.

[ Component [ Value
CPU cores 4
CPU architecture family 12h
CPU Operating Frequency 2.6 GHz

L1 I/D-cache 64 kB per core

L2 Cache 1 MB per core
GPU cores 4

GPU architecture Evergreen
GPU Operating Frequency 443 MHz

Streaming Processors
Stream Processing Unit
Local memory

16 per core
5 per-streaming processor
32 kB per core
emory controller ual channe
M 11 Dual ch 1 DDR3
| TDP [ 100 W |
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Figure 2: Schematic of the measuring setup.

3. MEASUREMENT SETUP

3.1 Power Measurement

Power was measured at the package level at normal operat-
ing temperatures. Benchmark execution time was kept low
and the processor was allowed to idle between benchmarks.
Measured values include the power consumption of the CPU
and memory controller for the Intel CPU, and also include
the GPU for the AMD APU.

To measure the power consumption, both the current and
voltage delivered to the package were measured. Measure-
ments were made using DataQ’s DI-149 [7] data acquisition
(DAQ) unit. It can measure differential voltage up to 10 V
at a maximum sampling rate of 10 kHz.

Four channels were used to measure the chip’s power con-
sumption: two were used to measure current, one to measure
voltage on the 12 V line, and another to measure voltage on
the 5 V line. Current was measured by inserting current
sensors on the 12 V lines of the power connector between
the power supply and motherboard. In accordance with
the ATX power specification [8], only this connector delivers
power to the CPU/APU’s voltage regulators. We used Alle-
gro’s ACST711 current sensors [9]. To measure voltage across
the 12 V line, a 100 k) potentiometer was used to halve the
voltage. A sampling rate of 1 kHz or 250 Hz per-channel
was used. Figure 2 shows a schematic of the measurement
setup.

To reduce the impact of other concurrently running applica-
tions contributing to the power measured, a system with a
clean installation of Ubuntu 12.04 LTS was used. The sys-
tem was run without a display, so the GPU would have no
additional tasks, and an SSH connection without X forward-
ing was used to access the system. Cool'n’Quiet [10] and
SpeedStep [11], AMD’s and Intel’s respective P-state [12]
dynamic voltage and frequency scaling (DVFS) implemen-
tations were disabled, meaning that the processors were al-
ways operating at their maximum frequencies. However,
C-states [12] were not disabled, so idle CPU or GPU cores
can still be gated.

3.2 Performance Counters

Modern processors contain performance monitoring counters
(PMCs) that can be programmed to monitor certain hard-
ware events. Using such counters has very low overhead [13].
The counters of interest for this work are those related to
memory operations, specifically the following:



1. Requests to L2 Cache — which counts the number
of L2 requests from L1 instruction and data caches.

2. L2 Cache Misses

3. DRAM Accesses — which counts the number of read
and write requests to the DRAM (on the Fusion only).

4. L3 Cache Misses — which counts the number of L3
cache misses (on the Xeon only).

By measuring L2 cache misses and DRAM accesses sepa-
rately on the Fusion, it is possible to distinguish between
cache misses that could be satisfied by other cores from those
that were satisfied by DRAM. Since the Xeon has a single
shared inclusive L3 cache, all L2 cache misses are forwarded
to the L3. L3 cache misses can only be satisfied by the main
memory. We also count of the number of memory requests
made by the CPU during simulation with Multi2Sim. With
these four values we can determine the number of hits and
misses to each level of cache.

While PMCs provide a quick and low overhead way of gath-
ering performance data they do have certain limitations.
The number of counters is limited to four on both proces-
sors, meaning that counts from multiple benchmarking runs
would need to be combined. However, the biggest limitation
is that they provide little insight into the execution pipeline.
For example, we have no way of separating an integer divide
from a multiplication. Therefore, we chose to use a simula-
tor to gather the rest of the performance information. This
allows us to get detailed information about what is taking
place in each processor pipeline during benchmark execu-
tion.

3.3 Multi2Sim Simulator

Multi2Sim [2] is an open source heterogeneous architecture
simulator, capable of performing cycle-accurate simulations
for both CPUs and GPUs. Multi2Sim is the only GPGPU
simulator that simulates AMD GPUs and specifically, the
Evergreen micro-architecture. While the x86 CPU model in
Multi2Sim is not based on any existing hardware, it is highly
configurable. This makes Multi2Sim an ideal platform for
simulating the Fusion.

However, Multi2sim exhibits a few limitations that were
discovered over the course of this work. Not all instruc-
tions are implemented in the Evergreen model, meaning that
not all application benchmarks could be simulated for the
GPU. Also, Multi2Sim simulates an inclusive cache hierar-
chy, while the Fusion CPU has an exclusive cache, and mem-
ory accesses are modeled with a constant latency. However,
since all our cache and memory data is obtained from PMCs,
this limitation does not affect any simulation statistics used
in our modeling.

4. BENCHMARKS

It is necessary to ensure that the benchmarks used to create
a power model represent a wide enough range of workloads
for the resulting model to be valid. For example, if no work-
loads include multiplications, we cannot expect to model the
energy consumption of a multiplication accurately. Further-
more, we need to ensure that certain types of workloads are

not overrepresented. Micro-benchmarks are used to achieve
these goals and target all components of the architecture. To
ensure the importance of individual components is not ex-
aggerated, application benchmarks that make use of a wide
range of components are also used, to ensure that any con-
stant energy consumption (e.g. leakage current) is not asso-
ciated with any of our performance statistics.

4.1 Micro-Benchmarks

A micro-benchmark exercises one specific component of a
processor. By using a diverse set of micro-benchmarks, it
becomes possible to characterize the entire processor. This
can be done for performance and power.

4.1.1 Memory Micro-Benchmarks

The GPU’s memory is fairly simple to test, because there
are only two type of memory: main memory and per-core
local memory. Main memory supports contiguous accesses
of up to 256 bits. To achieve maximum memory bandwidth,
applications should make contiguous memory accesses.

Three types of main memory accesses were considered: con-
tiguous, sparse, and conflict. For the contiguous case, each
core makes contiguous reads or writes to separate regions of
memory allowing for maximum throughput. For the sparse
case, threads on a core access memory with a stride of 256
bits. This prevents the coalescing of accesses from a single
core. For the conflict case, every thread on a core attempts
to read or write the same memory location. This forces
the writes to be serialized and reduces the amount of data
transferred for reads.

Two types of local memory access were also considered: con-
tiguous and conflict. There was no need for a sparse access
micro-benchmark as there is no penalty for non-contiguous
local memory accesses, only for conflicts.

The CPU’s memory is more complex for two reasons. First,
with main memory and multiple levels of cache there are
more types of memory to consider. Second, since the caches

are hardware-managed, we require lower level micro-benchmarks

to ensure we produce the desired behavior. We created an
additional micro-benchmark that allows accesses to be made
to each level of the memory hierarchy separately. This al-
lows us to control the number of memory accesses to the
various cache levels.

4.1.2 Compute Micro-Benchmarks

For the compute micro-benchmarks, the following factors
were considered: the operation, the data-type, the data val-
ues of the operands, the instruction level parallelism (ILP),
and the number of cores used. The possible values for each
of these parameters are given in Table 3. The operations
used include: arithmetic, relational, and bitwise operators.
If the ILP is one, operations will use the result of the previ-
ous operation as an operand. On the CPU, this implies that
only one pipeline can be active at a time. On the GPU, this
implies that multiple operations cannot be combined into a
single VLIW instruction. If the ILP is five, then operations
will use the result of the fifth-most recent operation as an
input. The value of five was chosen because Evergreen is
a VLIW-5 architecture, while the CPU is only 3-wide. By



Table 3: Possible Factor Values for Micro-
Benchmarks.
[ Parameter [ Possible Values |
+ooom & A, <<~

Operation <, !=, int/float conversion

Data-types int, int4, float, float4

Input data Values | 0000, 1111, 0101, ascending values

ILP 1,5

Cores 1,2,3,4

Table 4: Applications Benchmarks Used

Application name Source CPU | GPU | APU
Black Scholes

(C/x8T7)) PARSEC X

Bodytrack PARSEC X

Canneal PARSEC X

Dedup PARSEC X

Fluidanimate PARSEC 'S

Swaptions PARSEC X

Binomial Option APPSDK X

Black Scholes

(OpenCL/SSE) APPSDK x

DCT APPSDK v

N-body APPSDK x

Scan large array APPSDK X

Mandelbrot APPSDK v v

Matrix multiplication | APPSDK v v

Matrix multiplication

(local memory) APPSDK X v

Matrix transpose APPSDK X X

Prefix sum APPSDK X

Reduce APPSDK x x

Sobel Filter APPSDK X X

URNG APPSDK x x

Vector DistCL [17] v v
K-means Rodinia v
LU-decomposition Rodinia v
Needleman-Wunsch Rodinia v
Pathfinder Rodinia v

varying the ILP, we can measure power consumption at min-
imal and peak architectural efficiency for both the CPU and
GPU.

The same compute micro-benchmarks were used for the GPU
and CPUs. However, two versions of the scalar floating point
micro-benchmarks were created for the CPU. One that ex-
ecutes in the x87 pipeline and another that uses the SSE
pipeline.

4.2 Application Benchmarks

Application benchmarks are used to simulate a mixed work-
load that includes a range of memory and ALU operations.
It is important to include some general benchmarks that use
more than one type of operation to ensure that the energy
consumption of individual operations is not overestimated.
When a single operation is used, its modeled cost includes
not only the cost to execute the operation, but also any
overhead that is not captured by another metric. Appli-
cation benchmarks are also ideal for model validation, as
they cover a broad set of modeled parameters. The appli-
cation benchmarks had three primary sources: the AMD
APPSDK v2.7 [14], the PARSEC benchmark suite [15], and
the Rodinia heterogeneous benchmark suite [16]. In total,
twenty-four applications were used (see Table 4).

For the CPU and GPU models, four benchmarks were used
as validation benchmarks. They are marked with a ‘v’ in
the table, and are used to assess the predictive power of the
models. They are not part of the set of benchmarks used
to train models. The validation sets for the CPU and GPU
consist of four benchmarks each.

The PARSEC benchmarks are x86 applications and could
therefore only be run on the CPU. They were added because
the initial CPU models had very poor predictive ability. We
include all PARSEC benchmarks that would simulate in the
48-hour time window permitted for jobs on our compute
cluster. These benchmarks were run using one to four cores.

The Rodinia benchmarks consist of heterogeneous workloads
that run OpenCL kernels on the GPU and perform the re-
maining computations on the CPU. These benchmarks were
used to validate the APU power model as they target both
devices, allowing us to test the predictive power of the final
CPU+GPU model with benchmarks that make use of both
devices. The four Rodinia benchmarks used are the ones
that would simulate on the GPU.

5. BENCHMARK SET REDUCTION

In all, 1216 CPU and 928 GPU micro-benchmarks were
considered. Collecting power measurement for each micro-
benchmark on real hardware only takes a few hours. Simu-
lation is much more time consuming with each CPU micro-
benchmark require between 24 and 48 hours to complete.
We require more than three CPU years of total simulations
time. However, many of these micro-benchmarks have simi-
lar characteristics and they may not all be required for mod-
eling. In order to demonstrate this, we require a quantitative
approach to clustering micro-benchmarks, and then analyz-
ing the commonalities in a cluster.

We used Gaussian-means (G-means) [18] clustering to group
micro-benchmarks based on their commonalities. G-means
is a variant of the well-known k-means clustering [19]. Unlike
k-means, the G-means algorithm is capable of determining
what the appropriate number of clusters for a data-set is. It
starts by selecting a k and running the normal k-means algo-
rithm. Then, each cluster is tested to determine if it follows
a Gaussian, or normal, distribution. If any clusters do not
appear to be Gaussian, k is incremented and the process is
started again. G-means clusters the data into the minimum
number of representative clusters. We used Anderson and
Darling’s A? statistic [20] to test the distribution of each
cluster, as it was shown to be a powerful test with low com-
putational complexity [21]. To increase the confidence in
the clustering generated and since we have no knowledge of
probable centers, we ran k-means with 50 random starts.

The G-means algorithm was applied to the data gathered
from running the compute micro-benchmarks on real hard-
ware. For each micro-benchmark we considered the factors
shown in Table 3, as well as average power consumption,
runtime, and total energy consumption. To allow for simi-
lar ALU operations, such as addition and subtraction, to be
clustered, five operation groups were created. The group-
ings are listed in Table 5. This was done because from a
hardware perspective, there is very little difference between
an addition and a subtraction, or between any bitwise oper-
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Figure 3: Property scores for the Fusion APU.

Table 5: Operation Groupings

[ Group | Operations Included |
Logic and, or, xor
Unary not, increment

Comparison | less than, not equal
Arithmetic add, subtract

ations. The micro-benchmarks were clustered based on the
total energy required to run them. Energy was used because
the goal is to develop an energy per-instruction (EPI) model
and it combines both power consumption and runtime. Each
micro-benchmark executes an operation a fixed number of
times (48 000 000 in our case) making it possible to extract
per-operation energy consumption.

We created two reduced micro-benchmark sets based on the
G-means results. For the first, we used G-means to deter-
mine which factors have the greatest effect on energy con-
sumption, and then vary only these factors. For each cluster
we rank the properties in order and assign the most im-
portant property a score of five and the least important a
score of one. The scores for each property are then summed
for all clusters to determine the overall importance of each
property. Figure 3 shows the property scores for the APU.
For all devices, the most important factors were ILP, core
count, operations group, and data-type. This resulted in
the same reduced set of 184 micro-benchmarks for both the
CPUs and the GPU. The next approach was to select a single
micro-benchmark to represent each cluster — we call this the
minimal set. This set consists of 117 micro-benchmarks for
the Xeon CPU, 85 micro-benchmarks for the Fusion’s CPU,
and 32 micro-benchmarks for the Fusion’s GPU, reductions
of 90%, 93%, and 97% respectively.

6. MODELING

There are two common approaches to generating power mod-
els for processors: circuit-level modeling and statistical mod-
eling using performance data. Circuit-level modeling is a
more accurate but much more computationally expensive
approach and it is used in the popular Wattch CPU power
modeling framework [22]. It requires many details about
the architecture and process technology to produce accu-
rate results and can be quite burdensome in the early stage
of design when these details may not yet be known. On
the other hand, statistical modeling has a high up-front cost
while the model is being trained, but is much faster to use.
There are two common approaches to producing statistical
power models: top-down and bottom-up [23]. The top-down
approach treats the hardware like a black box, where no de-

tails about the modeled system need to be known. While
the top-down approach is simple and yields comparable re-
sults to the bottom-up approach, it has the limitation of not
being composable. With the bottom-up approach, the to-
tal power consumption can be decomposed into the power
consumption of various functional units, plus any fixed con-
sumption. This makes the bottom-up approach a good fit
for power models that will be used inside an architectural
simulator, and are therefore the types of models we use.

We used non-negative least squares (nnls) linear regression [24]
to solve our system of equations. We have one equation per
benchmark. For each equation, the dependent variable is
the total energy consumption, the independent variables are
the runtime of a benchmark and the counts of hardware ac-
tivity, and we are trying to solve for the energy consumption
of each predictor. Predictors are either statistics obtained
from the simulator or the PMCs, where examples include:
cycle counts, number of integer instructions, number of lo-
cal memory accesses, and number of L1 cache accesses, etc.
The values of the predictors vary according to the proper-
ties of the benchmarks. For example if we are doing integer
addition on the GPU increasing the ILP from one five will
approximately reduce the number add instructions by four
fifths. Since the problem is overdetermined by design, there
are more equations then unknowns, there is likely no exact
solution. Instead, a regression aims to find an approximate
solution by reducing the sum of squares of the residuals. The
residual for each benchmark is the difference between the
predicted energy consumption of a benchmark and the true
energy consumption of the benchmark. The final result is an
equation of the form: E = Ey, ng, +FErynky+...+Ex, 0k, +0
where, E is the dependent variable (total energy), Fi, and
nyg, are the coefficient and activity count of predictor k;, and
b is the intercept (static power X runtime).

The basic problem formulation for device power is expressed
in Equation 1. Total power (P) is the sum of static power
(Pstat) and dynamic power (Pgyn). Payn can be further de-
composed into the dynamic power of each core (Payn,), as
shown in Equation 2. As shown in Equation 3, Payn,. is
the sum of dynamic power for each predictor. The dynamic
power of each predictor is the product of the activity count
of the predictor (nx) and the energy consumption of the pre-
dictor (Ey) divided by time. Pstqr can also be decomposed
into the static power of each core (Pstqat,) and the static
power of shared resources (Pstats), as shown in Equation 4.
The complete breakdown of power consumption is shown in
Equation 5. To generate a power model, we need to solve
for Psiq: and the Ey’s. P is measured for real hardware and
core count and the value of n, are obtained from simula-
tion. Since power is energy over time (P = %), it is possible
to formulate the problem in terms of energy, as shown in
Equation 6.

P:Pstat+den (1)
#cores
Payn = Z Piyn,. (2)
c=1
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#preds.
ng X Ek
Payn, Z n (3)
k=1
#cores
Pstat - Pstats + Z PstatC (4)
c=1
Ffcores #preds.
Nek X E
P = P.stats + Z (Pstatc + Z t) (5)
c=1 k=1
#cores #preds.
E= tPstatS + Z <tPstu,tc + Z Neck X Ek> (6)
c=1 k=1

A bottom-up approach was used to obtain a decomposable
model [23]. This required the CPU and GPU power models
to be developed separately for the APU. In total, 16 CPU
models and 26 GPU models were considered. The complex-
ity in models varied significantly.

The modeling process consists of solving Equation 6. What
distinguishes the set equations for the various models are the
k’s being considered. For each model, the process shown in
Figure 4 was followed. The nnls solver used [25] does not
support the inclusion of an intercept term in the problem
formulation. Therefore, we have to perform multiple regres-
sions assuming different static power levels. We used values
of Pstatg between 0 and 35W in increments of 0.1W. The
maximum Psietg values are based on the range of power
consumption seen in CPU and GPU benchmarks. To solve
for Pstat., we added a parameter that is the product of the
number of cores used, and the duration of the benchmark.

Each model is assessed by its error rate. The model is used
to predict the energy consumption of each validation bench-

mark. Then, the residual is calculated and the relative error
is found, it is the absolute value of the residual divided by
the energy consumption of the benchmarks. Finally, the
arithmetic mean of all the relative errors is calculated. We
use an arithmetic mean instead of a geometric mean because
we want to increase the cost of high error outliers and reduce
the benefit from low error outliers. A less accurate model
with fewer outliers, that shows the correct trends, is more
useful than a model that is more accurate on average but
has a large error for certain workloads.

7. RESULTS AND DISCUSSION

We apply the above modeling technique to the two proces-
sors considered. In both cases, we created models based on
the full set of benchmarks, excluding the validation bench-
marks, as well as based on the two reduced sets. The models
were then validated using application benchmarks from the
AMD APPSDK and Rodinia benchmark suite.

For the CPUs, we considered models ranging in complexity.
The simplest models use a single predictor, such as the total
number of dispatched instructions, while the most complex
ones contain up to 25 terms and consider the instruction
and memory types separately. We also considered a range
of models for the GPU. The simplest model uses a single
predictor, while the most complex uses 18.

Figure 5 show the training and validation error of the three
benchmark sets for three representative models of the Xeon’s
power. Model 0 considers only the total number of dis-
patched instructions, model 1 considers accesses to various
functional units as well as each level of cache, and model
2 is the most accurate model for the Xeon and considers
only the functional units. As expected, we can clearly see
that in all cases the training error is lowest when we use
the largest available data set for modeling. In particular,
while the training error for all models is below 6% with the
full model, it can more than double when using the reduced
models. However, we find that for our best model, this has
a much smaller effect on the validation error. We observe
mean validation errors of 2.5%, 3.4%, and 2.6% for the full,
reduced, and minimal set of benchmarks respectively. The
model produced using the minimal set is specified in Table 7.

There are two main reasons that we see a lower validation
than training error for model 2. The first reason is that
this model does not consider any memory related predictors
beyond the calculation of effective addresses, therefore the
cache micro-benchmarks have a higher error. For the mini-
mal case, they increase the training error rate by 2.2%. The
second reason is that the canneal benchmark has a very high
error rate, 27% on average and up to 55% for the four core
case.

Figure 6 shows the results for the Fusion’s CPU using three
models. The first two models use the same predictors as the
Xeon’s. Model 2 is again the best model, and this time it in-
cludes the functional units, as well as the number of DRAM
accesses. On the Fusion, using reduced benchmark sets has
even less of an effect on training error. In most cases, the
error rate increases less than 1%. This shows that we can
substantially reduce the number of benchmarks used and
generate models of similar accuracy, if the benchmarks are
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Figure 5: Model errors on the Xeon CPU.

Table 6: Xeon Minimal Model

Predictor Coefficient (J)
Integer multiplication 7.74e~ 10
Integer divide 06.23e~ 1
Effective address 1.01e~°
Floating-point comparison 4.50e™°
Floating-point complex 5.38¢ 10
SSE complex 5.32¢ 1!
Static Power

Global 12.7 W
per-core 4.5 W

carefully chosen. We also see that the minimal set has lower
validation error than the reduced set. By picking a single
benchmark per cluster, we have a better distribution of the
various energy consumptions. For the most accurate model,
we observe mean validation errors are 5.7%, 8.1%, and 4.9%
for the full, reduced, and minimal set of benchmarks, re-
spectively. For model 2, canneal is again an outlier, with a
mean error of 13% and a 27% error rate in the four core case.
Since this model has a memory related predictor, the cache
micro-benchmarks only increase the training error rate by
0.5%.

Figure 7 shows the results for the Fusion’s GPU using three
models. Model 0 considers the number of execution cycles,
model 1 considers the cycles for the three functional units
separately, and model 2 considers the number of instructions
per functional unit, as well as the two types of memory ac-
cesses. We see that the more complex models overfit the
data, which results in very poor predictive ability*. Only the
first model is accurate and the validation errors are 8.2%,
4.5% and 110% for the full, reduced, and minimal set of
benchmarks, respectively. The minimum set produces such
poor results because the GPU benchmarks form few clusters,
resulting in only 32 benchmarks being used in this case, giv-
ing a model with poor predictive ability. The fact that a
simple model such as model 0 suffices to describe an inte-
grated GPU has also been shown by Bircher and John [26].

The full model for the Fusion heterogeneous processor com-
bines the best CPU and GPU models. We have to ensure
that we are not double counting the static power consump-
tion of shared resources. To find this static power, we mea-
sured the idle power consumption of the Fusion and found
it to be 8.2 W. This value is then subtracted from the static
power consumption of both the CPU and GPU, allowing for
the situation when they are both active. We validate the
final model using the Rodinia heterogeneous benchmarks.

LAll the cutoff bars have error rates above 100%.
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Figure 7: Model errors on the AMD Fusion GPU.

Figure 8 shows the total measured energy consumption of
the benchmarks, and predicted values using both the full,
and reduced models. The Reduced model is composed of
the reduced GPU and minimal CPU models. The mean er-
ror across these benchmarks is 8.7% and 7% respectively,
which means both methods produce very accurate models.
Table 7 specifies the reduced APU model.

8. RELATED WORK

Most of the previous power modeling work has focused on
CPUs. Only recently have these approaches been applied to
GPU power modeling. Some works took advantage of ex-
isting CPU circuit-level modeling infrastructure and added
it to the GPGPUSim simulator. Work by Wang et al. [27]
added power modeling to GPGPUSim using modified ver-
sions of Wattch and Orion [28]. Both GPUWattch [29] and
GPUSimPow [30] combine GPGPUSim with modified ver-
sions of McPAT to create GPU power models. These works
model Nvidia hardware.

There has also been work to create statistical power models
for GPUs. Hotpower [31] is an Nvidia GPU power model
based on GPU PMCs, as is the model developed by Na-
gasaka et al. [32]. Wang et al. [33] developed a power model
based on the PTX assembly code generated by the Nvidia
kernel compiler. The model developed by Hong and Kim [34]
is based on access rates obtained from their PTX assembly
code analysis tool [35]. These top-down approaches gener-
ate models that can be useful for online power estimation in
real hardware and can also be used to evaluate the effect of
program code on power consumption, but they have limited
use for architecture evaluation.

There has been comparatively little prior work looking at
AMD GPUs or integrated GPUs. Only one model of an in-
tegrated GPU was presented by Bircher and John [26] and
it was part of a top-down full system power model. The
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Table 7: Reduced APU Model
Predictor Coefficient (J)

Integer multiplication 1.03e~99
Integer division 9.95¢ 08
Bitwise 1.57¢%°
Floating-point multiplication 8.12e7%9
SSE bitwise 7.29e7 10
SSE floating-point comparison 2.52¢ 09
DRAM access 2.33¢07
Static Power

Global 8.2 W
CPU 12.6 W
CPU Per-core 3.3 W
GPU 6.3 W
GPU Per-core 0.07 W

only model for a discrete AMD GPU was presented by Ma
et al. [36] which used GPU performance counters, but mea-
sured power at the system level. Measuring power at the
system level can be very inaccurate, as it assumes that all
components other than the GPU have a constant power con-
sumption, which is not the case. Both these approaches are
also top-down and thus have the associated limitations.

There has been little work looking at instruction clustering
based on energy consumption. The work by Bona et al. [37]
aims to create an EPI power model. They compute k-means
with five to sixteen clusters for a 60-instruction ISA. They
show that the energy consumption of only 11 representative
instruction can represent the ISA, while keeping the stan-
dard deviation per cluster below 13%.

There has also been some work by Wang et al. [38] to study
power budgeting for heterogeneous processors. However,
their power model is very coarse assuming constant per-core
power consumption. This means that the only way to alter
the CPU’s or GPU’s power consumption is to increase or de-
crease the core count. Neither the effect of the workload on
power consumption, nor frequency scaling are considered.

9. CONCLUSION

We show that bottom-up power modeling techniques devel-
oped for CPUs can be effectively extended to heterogeneous
APUs. In so doing, we create the first bottom-up power
model of a heterogeneous processor. The decomposable na-
ture of bottom-up models allows them be used for similar
architectures with different core counts or operating frequen-
cies.

We also demonstrate that it is possible to cluster micro-
benchmarks based on power consumption to reduce the num-
ber of benchmarks required to create accurate power mod-

els. By ensuring that a reduced benchmark set still covers
a wide range of energy consumptions and operational vari-
ety, we were able to reduce the number of compute micro-
benchmarks used in modeling by up to 93%. This has com-
paratively little effect on the quality of the model, as illus-
trated by the fact that our final APU models have error rate
of 8.7% and 7% for the full and reduced benchmark sets, re-
spectively. This significantly reduces the effort required to
create accurate power models, since only the power measure-
ment, which run quickly on real hardware, needs to be made
for all of the benchmarks. The much more time consuming
simulations only need to be performed for a representative
sub-set of the benchmarks, resulting in much lower compu-
tational requirements.
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