
1

Subleq�: An Area-Efficient
Two-Instruction-Set Computer

Noriaki Sakamoto† Tanvir Ahmed† Jason Anderson‡ Yuko Hara-Azumi†∗
†Tokyo Institute of Technology ‡University of Toronto ∗JST PRESTO

Abstract—Applications with strict resource/power constraints
demand the research and development of area-efficient processor
designs that deliver reasonably good performance with small
circuit area. While the ARM and RISC-V [1] ISAs are lightweight
alternatives to x86, they nevertheless consume considerable cir-
cuit area and power. In this paper, we return to a fundamental
question: how area efficient can a processor be while retaining the
property of being “Turing Complete” (i.e., capable of realizing
any computation)? Beginning with a recently published one-
instruction-set computer (OISC), that uses a minimal amount
of resources, we consider adding a second instruction to the
instruction set and justify the choice of such an instruction. An
experimental study illustrates the benefits of our ISA extension
in terms of performance at minimal area cost.

I. INTRODUCTION

With increased diversity and complexity of applications,
processors have been augmented with richer instruction sets
for better computational efficiency. This is true not solely for
general-purpose processors, but also for embedded micropro-
cessors. For example, even one of simplest microprocessors,
the Cortex-M0, employs the ARMv6-M instruction set ar-
chitecture (ISA), which supports 56 instructions for general
data processing and I/O control [2]. Historically, Dennard
scaling has reduced the necessity for very area-efficient ISAs,
as migration to the next process node assured better power
efficiency per transistor. However, such scaling has stalled, and
with recent trends towards ultra-low-power Internet-of-Things
embedded applications, there is a need to re-visit the utility
of low-area-cost processor ISAs. Towards this objective, we
explore processors with very few instructions and low area.

Current RISC processors, with dozens of different instruc-
tions, are a distant cousin of One Instruction-Set Computer
(OISC) architectures [3], [4], which have a single instruction
capable of realizing any computation. OISC architectures sac-
rifice operational efficiency for very low area. This motivated
us to consider the question: what ISA extensions can be
made to an OISC ISA to raise performance with minimal
damage to area? As a first step, this article proposes a Two-
Instruction-Set Computer (TISC), based on an OISC, where a
second instruction is judiciously added to improve efficiency,
while retaining a low area footprint. While traditional ISA
extensions directly speed up specific computational hotspots
(e.g., patterns of frequently executed instructions) by introduc-
ing new resources [5], our work resolves the underlying cause
of slowness in a recently published OISC architecture. Thus,
our approach effectively speeds up different types of hotspots
by a single new instruction. Moreover, to the extent possible,

the new instruction reuses the resources of the base processor
to mitigate area overhead.

In this paper, we target the subleq OISC ISA, whose
instruction performs subtraction followed by a conditional
jump, as the base processor. We add a bit-reversal subleq
instruction in order to speed up a variety of arithmetic opera-
tions. The extended subleq, named Subleq�, flexibly selects
the faster instruction out of the two (the original subleq
or the bit-reversal subleq). In an experimental study, we
demonstrate the effectiveness of the proposed TISC ISA in
achieving good speedup (2.78× on average, and up to 7.75×,
which outperforms traditional approaches of ISA extension
achieving only up to 3.56×) and mitigation of area overhead
(1.33× higher area, whereas traditional approaches introduced
1.87× and 5.46×) at the same time.

Aside from OISC ISA extension, our work is applicable
to other types of processors, including those used in current
commercial products. Thus, we expect this work is of keen
interest to both academic, as well as industrial computer
architects.

II. SUBLEQ COMPUTER

The rationale for RISC ISAs is to keep processors small
by limiting the number of instructions. The ultimate RISC
ISA is a single instruction [3], [4]—an OISC ISA—where
all computational work is expressed as a sequence of the
single instruction. The processor’s structure is kept simple
and small; however, the computational work is generally
inefficient as a consequence of the number of instructions that
are needed to get work done. Subleq is an OISC employing
word-addressable memory. The instruction is subleq, whose
mnemonic is “subleq A,B,C ”—subtraction of the first two
operands, comparison of the subtraction’s result with zero, and
then jump to an address (the subsequent instruction in memory
or the third operand) according to the comparison result [3].
The semantics are as follows:

r ← mem[B]−mem[A]

mem[B]← r

PC ←
{
C if r ≤ 0

PC + 3 otherwise

halt if C < 0.

The condition r ≤ 0 is equivalent to “r = 0 or r’s MSB is
equal to 1.” Different types of operations (add, subtract, multi-
ply, logical, etc.) will require different numbers of subleq in-
structions to execute. For example, an addition operation takes
five subleq instructions. The specific recipe of subleq

2

1 for (int i = 0; i < w - 1; i++)
2 x <<= 1;
3 if (x < 0)
4 lsb = 1;
5 else
6 lsb = 0;

Fig. 1: LSB search for input x (w is word size).

instructions to perform addition, test on the MSB, left shift,
and the other operations is omitted for space considerations
and the interested reader is referred to [3] and [6].

As is apparent above, each instruction requires subtraction,
conditional jump on zero/sign, and self modification. Thus,
for performing multiplication, shifts, and bitwise logical op-
erations, a loop is executed w (word-length) times in order to
access bitwise information from MSB to LSB, via repeated
left shifting, as shown in Fig. 1. Essentially, the LSB must
be shifted into the MSB position, making it the sign bit,
thereby allowing the Subleq’s comparison-with-0 functionality
to be leveraged. Left shift can be implemented with Subleq by
adding an operand to itself, which is possible by first creating
a negated version of the operand, and then using the existing
subtraction capability, i.e., Z � 1 ≡ Z − (−Z).

The second column of Table I shows the time complexity of
commonly occurring operations when they are executed with
subleq instructions. One can observe that shift, multiplica-
tion and logical operations are quite inefficient as compared
with addition, as their time complexity depends on the shift
amount (n) or word-width (w).

III. TISC: TWO-INSTRUCTION-SET COMPUTER

A. Subleq�: Extended Subleq

To reduce the inefficiency of the Subleq OISC ISA for
operations like multiplication and shift, we propose to add a
bit-reversal subleq instruction, whose purpose is to speedup
the LSB search. We refer to this as extended Subleq, Subleq�.
The instruction of Subleq�, subleq�, consists of two oper-
ations: 1) subtraction and branch on sign, and 2) bit-reversal
subtraction and branch on evenness, as follows:

r ←
{
mem[B]−mem[A] if C > 0

�(�mem[B]− �mem[A]) if C < 0

mem[B]← r

PC ←
{
|C| if C > 0 and r ≤ 0,

or C < 0 and �r ≤ 0
PC + 3 otherwise

halt if C = 0.

where � is a monadic operator (bit reversal), e.g.,
�3’b001 = 3’b100 and �4’b1010 = 4’b0101. Ob-
serve that, as mentioned above, the second branching condition
reduces to checking evenness because bit reversal swings the
MSB into the LSB position (thereby indicating even/odd).
Note that the more efficient instruction is selected, subleq
or subleq�, depending on the operation and the value.

Comparing the original Subleq and the proposed Subleq�,
the two variants both require the hardware capability for
subtraction and comparison. The additional hardware required
in Subleq� is primarily multiplexers that permit the selec-
tion between either normal (i.e., unreversed) or bit-reversed

operands. In hardware, bit-reversing of operands is simply
permuted wiring. While the original subleq instruction is
efficient at 1-bit left shift, the bit reversal means the new
subleq� instruction is efficient at 1-bit right shift.

B. Reduction of Time Complexity
With Subleq�, the time complexity for performing arith-

metic operations is significantly reduced. We first illustrate this
using the computation of logical right shift (srl rd,rt,n
performing rd = rt � n; same as MIPS’s Shift Left
Logical instruction) in Subleq compared with Subleq�. For
this instruction, Fig. 2 and Fig. 3 give C-like pseudo code
using 1-bit shift left and right, respectively (in the following
pseudo codes, we use rs and rt as source registers and rd
as a destination register, similarly as MIPS). Both of them get
input values from memory location rt and n and write back
output into memory location rd. When 1-bit left shift must
be used (Fig. 2), the approach is to extract the (w−n) higher-
order bit positions of rt (by iteratively extracting the MSB
leveraging the available left shift) and move these bits into the
lower-order bit positions of rd. Figure 4 shows a brief sketch
of how the algorithm works: by repeating 1-bit logical left shift
on a double word {rd,rt}, we can implement (w − n)-bit
logical left shift (in the bottom of Fig. 4), whose upper result
equals to the result of n-bit logical right shift (in the top of
Fig. 4). When 1-bit right shift is realized by Subleq�, its time
complexity reduces from O(w) to O(1). For an n-bit right
shift (n is the shift amount), Subleq� can select faster among
1-bit left shift and right depending on the shift amount (n)
with additional instructions which can be implemented with
no additional hardware, comparing therefore reducing the time
complexity from O(w) to O(min(n,w − n)).

Similarly, multiplication is defined as: mult rt,rs,
which performs {hi,lo} = rt × rs, where “{hi,lo}”
refers to a double word whose upper and lower words are hi
and lo. It can be calculated in different ways, depending if
only efficient left shift is available (Fig. 5) or if both efficient
left shift and right shift are available (Fig. 6). Note that
Subleq� always selects that latter version that uses 1-bit right
shift, which is faster, reducing time complexity from O(w) to
O(l) (l is bit-width of the operand, i.e., l = dlog2 rse). With
reference to Fig. 5, checking the MSB of multiplier rs, the
algorithm shifts rt, add the multiplicand to the sum {hi,lo},
and shifts the sum. The loop is executed w times.

In the algorithm that requires right shift, shown Fig. 6,
multiplicand (rt = {mh,ml}) is shifted. Checking the
LSB of multiplier rs, the algorithm shifts the multiplicand
(rt = {mh,ml}), and adds the shifted multiplicand to the sum
{hi,lo}. The algorithm is similar to how long multiplication
is taught in grade school. It is possible to exit the loop when
the multiplier becomes zero to skip unneeded calculation. The
same approach can be applied to logical operations, whose
explanation is omitted for space considerations.

The time complexity of Subleq� is summarized in the
third column of Table I. Also, Figs. 7 and 8 compare the
number of instructions for computing logical right shift and
multiplication, respectively, by Subleq and Subleq�. The X-
axis is the value of shift amount (n) in Fig. 7 and the bit-width

3

1 rd = 0;
2 for (int i = 0; i < w - n; i++) {
3 // shift double word {rd,rt} left by 1 bit
4 rd <<= 1;
5 rd += msb(rt);
6 rt <<= 1;
7 }

Fig. 2: Logical right shift by 1-bit left shift (available for
Subleq and Subleq�).

1 rd = rt;
2 while (--n >= 0) // loop for n times
3 rd >>= 1; // O(1) with subleq�

Fig. 3: Logical right shift by 1-bit right shift (available for
Subleq� only).

TABLE I: Comparison of time complexity (w: word-width, l:
bit-width of the operand, and n: shift amount)

Subleq Subleq�
Addition O(1) O(1)

1-bit left shift O(1) O(1)
n-bit left shift O(n) O(min(n,w − n))

1-bit right shift O(w) O(1)
n-bit right shift O(w) O(min(n,w − n))

Multiplication O(w) O(l)
Logical O(w) O(l)

of multiplicator (l) in Fig. 8, and the y-axis is the number
of subleq or subleq� instructions. Dots in the figures
reflect 10,000 randomly-generated values. Solid and dotted
lines represent the average for each x-value. For logical right
shift, use of 1-bit right shift (left) is faster when n is small
(large), and for multiplication, use of 1-bit right shift is always
faster. When n is large (especially n = 17 to 20), Subleq�

takes slightly more instructions due to the overhead of dynamic
selection of the faster algorithm. However, as will be shown
in the next section, this overhead is negligible compared with
the speedup achieved for the other computations during the
execution of actual applications.

IV. EXPERIMENTAL STUDY

We implemented OISC and TISC architectures in C and
synthesized RTL descriptions using commercial tools (Vivado
HLS 2015.1 and ISE 13.4) targeting the Xilinx Virtex 6 FPGA
(xc6vsx475tff1759-2) to evaluate the circuit area and
clock frequency. Also, we evaluated performance (i.e., dy-
namic instruction counts) for a number of practical applica-
tions using a simulator developed in house. The benchmarks
were compiled by GCC-4.1.1 with -O2 optimization. For more
detail, please refer to [6] for a complete description of the
compilation flow.

Four architectures were considered: Subleq (baseline), two
Subleq-based TISCs, and Subleq�. All of them have CPI of
4. The two TISCs are representative of a traditional approach
to ISA extension, wherein an instruction is added to speed up
specific hotspot operations. In particularly, TISCs and TISCm
incorporate two-operand right shift and multiplication, respec-
tively, as the second instruction, since they are both hotspot
operations (and very time intensive when only subleq is
available), Meaning, the TISCs and TISCm architectures con-
tain dedicated hardware for right shift and multiplication,
respectively.

w

rd rt
· · · · · ·

rd rt

w − nwnn

w

n

· · · · · ·
rd

(w − n)-bit left shift

n-bit right shift

Input

Fig. 4: n-bit right shift (in Fig. 3) and (w − n)-bit left shift
(in Fig. 2).

1 hi = lo = 0;
2 for (int i = 0; i < w; i++) { // loop for w times
3 {hi, lo} <<= 1;
4 if (msb(rs) > 0)
5 {hi, lo} += rt
6 rs <<= 1;
7 }

Fig. 5: Multiplication by 1-bit left shift (available for Subleq
and Subleq�; however, Subleq� always selects 1-bit right
shift)

1 hi = lo = 0; {mh, ml} = {0, rt};
2 // {mh,ml} is a double-word multiplicand and repeatedly shifted
3 while (rs != 0) { // loop for l(= dlog2 rse) times
4 if (lsb(rs) == 1) // O(1) with subleq�
5 {hi, lo} += {mh, ml};
6 {mh, ml} <<= 1;
7 rs >>= 1; // O(1) with subleq�
8 }

Fig. 6: Multiplication by 1-bit right shift (available for
Subleq� only)

TABLE II: Synthesis Results
Architecture Subleq TISCs TISCm Subleq�

#LUTs 147 275 862* 195
(×1.87) (×5.86) (×1.33)

fmax [MHz] 166.9 132.7 84.0 158.1
(×0.80) (×0.50) (×0.95)

* 180 LUTs, 3 DSP48s

A. Experimental Results

Table II shows the synthesis results (i.e., circuit area [LUTs]
and clock frequency). Numbers in parentheses represent ratios
relative to the baseline (Subleq). Note that TISCm uses not
only LUTs but also three DSP units, however, the results in
the table show the equivalent number of LUTs permitting
comparison with the other architectures. As shown in the
table, Subleq� has less overhead in both circuit area and
frequency than the two TISCs with hardened instructions. This
is because Subleq� can reuse most of the original Subleq,
while the two TISCs require appreciable new resources for
the second instruction (right shift or multiplication). Note that
TISCm has bigger overhead in clock frequency because of
multiplication. The Subleq� requires ∼50 more LUTs than
Subleq and operates at roughly the same clock frequency. We
believe this is a modest area cost, considering the performance
benefits it affords.

Table III compares the wall-clock time (i.e.,
[dynamic cycle counts] × [clock period]) of 12 applications
executed by the four architectures. The first column lists
the benchmarks used, and the second to fifth columns
show the wall-clock time of the four architectures for each
benchmark. Geomean is shown in the bottom row. Numbers

4

Fig. 7: Number of instructions for logical right shift

Fig. 8: Number of instructions for multiplication

in parentheses are speedup ratios vs. Subleq. Note that all
of these benchmarks require right shift, while only adpcm,
bubble, gsm, intmm and jfdtint have multiplication.
Although TISCs also reduced dynamic cycle counts of its
target hotspot operations, as seen from the table, its wall-clock
time degrades relative to the original Subleq. This is because
the overhead in clock period is larger than reduction in
dynamic cycle counts. Whereas TISCm achieved a speedup
for multiplication-contained applications, it rather provided
speed degradation for multiplication-less ones due to clock
period elongation without any cycle-count benefit. Conversely,
Subleq� achieves significant speedup in all benchmarks—on
average 2.78× and up to 7.75×. Interestingly, Subleq�
achieved the largest speedup (7.75×) in intmm, which
has the highest ratio of multiplication, and outperformed
even TISCm (only 3.83×). Recalling the fact that the clock
degradation is small in Subleq�, these speedup effects come
from reduction in cycle counts. In order to confirm this,
Fig. 9 shows cycle counts for four benchmarks, selected to
reflect a diversity of operations types: bf, gsm, jfdctint,
and mpeg. While the two TISCs can reduce dynamic cycle
counts in only limited types of operations, Subleq� provides
cycle-count reductions across varied operation types, thereby
benefiting a wider scope of applications.

Our evaluation demonstrated that Subleq� achieves consid-
erable speedup for a variety of applications irrespective of
the dominant type of instructions. The implementation results
show that Subleq� realizes an ISA extension which is still
simple yet area-efficient. The results highlight the value of
improving instruction inefficiency, while re-using a significant
portion of the baseline processor.

V. CONCLUSIONS

In this paper, we propose to extend the recently published
OISC ISA, Subleq, with an additional instruction, which
re-uses the already existing hardware, with the operands

TABLE III: Wall-Clock Time and Speedup Ratio
Benchmarks Subleq TISCs TISCm Subleq�

adpcm 27.68 ms 32.25 ms 7.59 ms 5.28 ms
(0.86) (3.64) (5.24)

bf 309.55 ms 325.44 ms 382.20 ms 171.03 ms
(0.95) (0.81) (1.81)

bs 7.61 µs 6.43 µs 4.10 µs 2.11 µs
(1.18) (1.86) (3.61)

bubble 230.39 ms 289.53 ms 106.45 ms 54.46 ms
(0.80) (2.16) (4.23)

crc 9.86 ms 10.60 ms 15.51 ms 6.32 ms
(0.93) (0.64) (1.56)

fibcall 3.43 µs 4.31 µs 4.69 µs 2.60 µs
(0.80) (0.73) (1.32)

gsm 11.14 ms 11.36 ms 9.68 ms 5.51 ms
(0.98) (1.15) (2.02)

insertsort 136.64 µs 171.82 µs 52.67 µs 26.21 µs
(0.80) (2.02) (5.21)

intmm 187.14 ms 233.56 ms 48.81 ms 24.16 ms
(0.80) (3.83) (7.75)

jfdctint 738.36 µs 825.49 µs 597.10 µs 293.67 µs
(0.89) (1.24) (2.51)

mpeg 4.69 ms 3.87 ms 5.24 ms 2.44 ms
(1.21) (0.89) (1.92)

vecadd 2.76 ms 3.47 ms 3.16 ms 1.50 ms
(0.80) (0.87) (1.84)

geomean 3.25 ms 3.59 ms 2.30 ms 1.17 ms
(0.91) (1.41) (2.78)

Fig. 9: Dynamic instruction count for four benchmarks; bars
from left-to-right: Subleq, TISCs, TISCm, and Subleq�.

optionally bit-reversed. The extension targets the weakness
of Subleq in handling right-shift, multiplication, and logical
operations, which require many instructions to realize. An
experimental study demonstrated the area bloat and clock
period increase associated with the extension to be quite small.
Across a set of benchmarks, the proposed TISC offers a 2.78×
wall-clock-time speedup, on average, relative to the original
Subleq. As future work, we intend to explore area-efficient
ISA extensions by adopting additional instructions. We would
also like to explore the power and energy consumed by the
various processor architectures.

REFERENCES

[1] RISC-V Foundation, http://riscv.org/, 2016.
[2] ARMv6-M Architecture Reference Manual, ARM, 2010.
[3] O. Mazonka, “Bit copying: The ultimate computational simplicity,” Com-

plex Systems, vol. 19, no. 3, 2009.
[4] D. W. Jones, “The ultimate RISC,” SIGARCH Comput. Archit. News,

vol. 16, no. 3, pp. 48–55, Jun. 1988.
[5] C. Galuzzi and K. Bertels, “The instruction-set extension problem: A

survey,” ACM Trans. Reconfig. Technol. Syst., vol. 4, no. 2, pp. 1–28,
2011.

[6] T. Ahmed et al., “Synthesizable-from-C embedded processor based on
MIPS-ISA and OISC,” in International Conference on Embedded and
Ubiquitous Computing (EUC), Oct. 2015, pp. 114–123.

